# Whom to Trust in a Signed Network?

#### Matúš Medo (with Berno Büchel and Fanyuan Meng)

Inselspital, Bern University of Fribourg, Fribourg

Networks 2021 5 July 2021

## Problem: An observer who learns from link signs



- Nodes of two types:  $\theta_i \in \{-1, +1\}$
- Link signs correlate with node types:
  - $\theta_i = \theta_j$ : link is positive with probability  $r \ge 0.5$
  - $\theta_i \neq \theta_j$ : link is negative with probability  $r \ge 0.5$
- Source nodes: The observer knows their types
  - Probability that signal is correct:  $q \ge 0.5$

## Problem: An observer who learns from link signs



- Nodes of two types:  $\theta_i \in \{-1, +1\}$
- Link signs correlate with node types:
  - $\theta_i = \theta_j$ : link is positive with probability  $r \ge 0.5$
  - $\theta_i \neq \theta_j$ : link is negative with probability  $r \ge 0.5$
- Source nodes: The observer knows their types
  - Probability that signal is correct:  $q \ge 0.5$

## Possible applications of the model

- 1. Two opposing camps: mainstream media and misinformation sources
  - You initially trust in some mainstream media
  - Do you end up trusting other mainstream media and distrusting misinformation sources?



## Possible applications of the model

- 1. Two opposing camps: mainstream media and misinformation sources
  - You initially trust in some mainstream media
  - Do you end up trusting other mainstream media and distrusting misinformation sources?
- 2. Employee network: Manager attempts to assess hidden qualities of a target employee
- 3. Inter-firm network: Which other firms to trust
- 4. Social networks: E.g., find a suitable roommate
- 5. ...

- 1. Choose target node *t* at random
- 2. Opinion on *t* is made using its random neighbor:



- 1. Choose target node *t* at random
- 2. Opinion on *t* is made using its random neighbor:



- 1. Choose target node *t* at random
- 2. Opinion on *t* is made using its random neighbor:



- 1. Choose target node *t* at random
- 2. Opinion on *t* is made using its random neighbor:



- 1. Choose target node *t* at random
- 2. Opinion on *t* is made using its random neighbor:



- 1. Choose target node *t* at random
- 2. Opinion on *t* is made using its random neighbor:



## Random neighbor heuristic: The outcome



Shaded area: 10th–90th percentile range

## Random neighbor heuristic: The outcome

- Even few misleading links (r < 1) cause low expected accuracy and high accuracy variability
- As N grows, expected accuracy approaches 0.5 as

$$E(A) - 0.5 \sim N^{1-r}$$

## Random neighbor heuristic: The outcome

- Even few misleading links (r < 1) cause low expected accuracy and high accuracy variability
- As N grows, expected accuracy approaches 0.5 as

$$E(A) - 0.5 \sim N^{1-r}$$

To make sense of a complex world is difficult

See M. Medo, M. S. Mariani, L. Lü, Communications Physics 4, 1, 2021 for more

#### 1. Bayesian solution:

- The probability of a vector of node types,  $\theta$ , when source node signals are  $\sigma$  and observed link signs, R:  $P[\theta|\sigma, R]$
- The probability that given target node *t* is of positive type is

$$P(\theta_t = +1) = \sum_{\boldsymbol{\theta}:\theta_t = +1} P[\boldsymbol{\theta}|\boldsymbol{\sigma}, \boldsymbol{R}]$$

#### 1. Bayesian solution:

- The probability of a vector of node types,  $\theta$ , when source node signals are  $\sigma$  and observed link signs, R:  $P[\theta|\sigma, R]$
- The probability that given target node *t* is of positive type is

$$P(\theta_t = +1) = \sum_{\boldsymbol{\theta}:\theta_t = +1} P[\boldsymbol{\theta}|\boldsymbol{\sigma}, \boldsymbol{R}]$$

#### 2. Shortest-path heuristic:

- For all source nodes,  $s \in S$ , find the shortest path  $s \rightarrow t$
- Compute the probability  $P(\theta_t = +1|s \rightarrow t)$  for each path
- Aggregate information from all paths as if they were not overlapping

## Simulation results



## Simulation results



7

#### Theorem (Equivalence)

If path from s to t is unique for all  $s \in S$  and the paths from distinct source nodes do not overlap, the Bayesian rule and the shortest path rule are equivalent.



#### Theorem (Ordering)

For a given network, set of source nodes S and target node t, the expected accuracies of the three rules are be ordered as

 $E[A^{Bayes}] \ge E[A^{ShPath}] \ge E[A^{RNeighbor}].$ 

## Theoretical results

#### Theorem (Unique Path)

If there is only one source and the path from s to t is unique, then all three rules yield the same expected accuracy

$$E[A^{Bayes}] = E[A^{ShPath}] = E[A^{RNeighbor}]$$



## Theorem (Shortest Path Accuracy)

When the source and target node are chosen at random in an Erdös-Rényi network, the expected accuracy of the shortest path decays with the number of nodes, N, as  $E[A^{ShPath}] - 0.5 \sim N^{-\gamma_{ShPath}}$  where

$$\gamma_{ShPath} = -\ln(2r-1)/\ln z$$

and z is the mean degree.

Recall: For the random neighbor rule, the scaling exponent is

 $\gamma_{RNeighbor} = 1 - r.$ 

#### Summary

- Opinion/trust formation on a signed network
- Different from other opinion formation models (voter model, DeGroot,...)
  - One agent (observer), N subjects

#### Summary

- Opinion/trust formation on a signed network
- Different from other opinion formation models (voter model, DeGroot,...)
  - One agent (observer), N subjects
- For simple formation mechanisms, the results are sensitive to noise in the system
- More sophisticated mechanisms yield better results at higher computational costs
- See more here:
  - 1. M. Medo, M. S. Mariani, L. Lü, The fragility of opinion formation in a complex world, Communications Physics 4, 1 (2021)
  - 2. F. Meng, M. Medo, B. Buechel, Whom to Trust in a Signed Network? Optimal Solution and two Heuristic Rules, preprint (2021)

## Further questions

- 1. Consider more than two node types
- 2. Correlate link presence with node types (here only link signs depend on types)

- 3. Which rules yield accurate opinions without being excessively demanding?
- 4. Which spurious links distort the results most?
- 5. Combination with social opinion-formation models
- 6. How to empirically study belief formation on signed network data?

7. ...

## Thank you for your attention!

http://www.ddp.fmph.uniba.sk/~medo/physics/ matus.medo@unifr.ch