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Complex networks



Historical milestones

• 1736, Euler: bridges of Königsberg

• 1959, Erdős & Rényi: random graphs

• 1998, Watts & Strogatz: disorder in regular networks
• 1999, Barabási & Albert: preferential attachment
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Historical milestones

Complex network = graph + context
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Historical milestones
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Network glossary
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Information networks around us

• E-commerce systems: users and purchased items

• The World Wide Web: hyperlinked web pages

• Academia: citations among scientific papers

→
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Why physicists study complex networks

• Many metrics, models, and algorithms can be introduced…
The tough part is to decide which are useful

• Historical note:
• In Aristotelian physics, a projectile moves along a straight
line until its “force” is exhausted and the projectile falls
straight down

• It took almost 2000 years and good measurements
(Copernicus, Brahe, Galileo,…) to discredit the theory

• Proposing and testing models is how physicists can
contribute
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From data to models



Preferential attachment

• Re-discovered many times: Yule (1925), Simon (1955),
Price (1976), Barabási & Albert (1999)

• Probability that node i attracts a new link at time t:

P(i, t) ∼ ki(t)︸︷︷︸
node
degree

• Resulting growing networks have a power-law degree
distribution similar to real systems
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The missing element

American Physical Society papers, 1893–2009
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The missing element

Aging is
fundamental
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A better model (PRL 107, 238701, 2011)

• Probability that node i attracts a new link

P(i, t) ∼ ki(t)︸︷︷︸
degree

× DR(t)︸ ︷︷ ︸
aging

× fi︸︷︷︸
fitness

• DR(t) is a function that decreases with time
• fi is node parameter

• This model:
• Produces various realistic degree distributions
• Explains data better than other models
(likelihood maximization in PRE 89, 032801, 2014)

• Obviously, it does not capture all effects
(see paper by Golosovsky and Solomon in PRE, 2017)
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The model’s implication

• The expected final node degree is

ki(∞) ∝ exp(αfi)

• Hence paper 1 with 1000 citations is not 100-times better
than a paper 2 with 10 citations

• Instead, the papers’ fitness ratio is

f1/f2 = ln k1/ ln k2 = 3
• A case for modesty

• Citations counts magnify the qualitative differences
between papers/researchers

• Besides numbers, we should look at individuals’
contribution in terms of ideas, service to community, etc.
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Application 1:
Ranking network nodes



PageRank: A classical network centrality metric

• Centrality metrics quantify the importance of nodes
• Simplest centrality metric: in-degree
• PageRank weights links from important nodes more

• PageRank score pi of node i is

pi = c
∑
j→i

pj
koutj︸ ︷︷ ︸

network contribution

+ 1− c︸ ︷︷ ︸
teleportation

• c = 0.85 (WWW) or c = 0.5 (citation networks)
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Evaluation on model networks

• Three key elements of the model:
1. Node-specific fitness fi

2. Decay of relevance (attractiveness to incoming links): DR(t)

3. Decay of activity (activity to create outgoing links): DA(t)

• Timescales of the two decays: ΘR and ΘA

The key question:
Can PageRank uncover node fitness fi?
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When PageRank fails (Sci. Rep. 5, 16181, 2015)
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Correcting PageRank (Journal of Informetrics 10, 1207, 2016)

• Citation data fall in a very wrong part of the (ΘR, ΘA)

plane, yet PageRank is still commonly applied there…

• We introduce rescaled PageRank of paper i as

Ri(p) =
pi − µi

σi

• pi is PageRank score of paper i
• µi and σi are the mean and standard deviation of PageRank
score for papers published “close” to paper i
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Rescaled PageRank: bias removal

Divide the APS papers by age in 40 equally large groups
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↓
Allows us to fairly compare all papers!
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Rescaled PageRank: identification of milestones

Evaluation based on “milestone letters” announced by PRL
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Note: CiteRank (Walker et al, 2007) is competitive with Rp in some aspects
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PageRank vs. rescaled PageRank
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From research to applications: www.sciencenow.info
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Application 2:
Community detection



Introduction to community detection

• Many networks have community structure:
• Some nodes are densely connected with each other
(community)

• Communities in social networks can be due to language,
age, race, …

• Importance:
• Can help us understand how the system works
• Communities often have properties that differ a lot from
the average network properties

• “As long as there will be networks, there will be people
looking for communities in them.” (Fortunato and Hric,
2016)

• How best to find the communities?
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Network modularity

• Popular approach to community detection: maximize the
modularity function (Girvan & Newman, 2002)

in the same community
↓

Q =
1
m

∑
i, j

(
Aij −

kouti kinj
m

)
δ(ci, cj)

↗ ↑ ↖
number of links connected or not link expectation
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The problem in growing networks

node appearance time

true community 1

true community 2

node appearance time

true community 1

true community 2

Community detection with standard modularity

• Standard modularity fails even if the true communities are
disconnected (when N & 4ΘR)

• Reason of failure:
If time matters, the link expectation term is wrong

Q = 1
m
∑

i, j

(
Aij −

kouti kinj
m

)
δ(ci, cj)
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Modularity for growing networks (to be submitted)

Modularity with link expectation combined from all L layers

QT(L) =
1
m

∑
i,j

(
Aij −

L∑
l=1

∆kouti,l ∆k
in
j,l

ml

)
δ(ci, cj)

node appearance time

true community 1

true community 2

Community detection with temporal modularity
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When it works and when it does not

1 1024

nodes per layer

1

1024

Θ
R

0.0

0.2

0.4

0.6

0.8

1.0

N
M
I

Dashed line corresponds to median link timespan
22



Take-home message

−→

1. We know a lot about the evolution of complex
systems

2. Let the data drive you

3. Beware the application range of “good old” metrics
and algorithms

4. By taking time into account, you can do better
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Further related work:

1. H. Liao, M. S. Mariani, M. Medo, Y.-C. Zhang, M.-Y. Zhou, Ranking
in evolving complex networks, Physics Reports 689, 1-54, 2017

2. G. Vaccario, M. Medo, N. Wider, M. S. Mariani, Quantifying and
suppressing ranking bias in a large citation network, Journal of
Informetrics 11, 766-782, 2017

3. M. Medo, G. Cimini, Model-based evaluation of scientific impact
indicators, Physical Review E 94, 032312, 2016

4. A. Vidmer, M. Medo, The essential role of time in
network-based recommendation, EPL 116, 30007, 2016

5. M. Medo, M. S. Mariani, A. Zeng, Y.-C. Zhang, Identification and
modeling of discoverers in online social systems, Scientific
Reports 6, 34218, 2016

Web site: www.ddp.fmph.uniba.sk/~medo/physics/

Yi-Cheng Zhang Giulio Cimini Stanislao Gualdi Alex Vidmer An Zeng Manuel Mariani

Thank you for your attention!

www.ddp.fmph.uniba.sk/~medo/physics/


Thank you for your attention!

Questions?
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