# Diffusion: a new approach to recommender systems

#### Yi-Cheng Zhang, Matúš Medo, Jie Ren, Tao Zhou, Tao Li, and Fan Yang

University of Fribourg Switzerland, Renmin University of China, USTC China

#### ECCS'07 Satellite Workshop

Dresden, October 4, 2007

Zhang et al (University of Fribourg)

Recommendation by diffusion

# The playground

#### available data:

- ratings from M users for N movies
- integer scale: 1 (very bad), 2, 3, 4, 5 (perfect)

# The playground

#### available data:

- ratings from M users for N movies
- integer scale: 1 (very bad), 2, 3, 4, 5 (perfect)
- both *M* and *N* can be very large
  - thus we need an efficient recommendation method

# The playground

#### available data:

- ratings from M users for N movies
- integer scale: 1 (very bad), 2, 3, 4, 5 (perfect)

■ both *M* and *N* can be very large

thus we need an efficient recommendation method

prediction methods already available:

#### average rating

(recommendation by overall "quality")

#### correlation based

(recommendation by the user-user similarity)

. . .

#### Representations of the data

available ratings: weighted bipartite graph



#### Representations of the data

available ratings: weighted bipartite graph



movie-to-movie projection of the data



Zhang et al (University of Fribourg)

Recommendation by diffusion

#### Diffusion in the movie-to-movie network

#### opinions expressed by a particular user spread over the network



#### Diffusion in the movie-to-movie network

opinions expressed by a particular user spread over the network



## Diffusion in the movie-to-movie network

opinions expressed by a particular user spread over the network



#### summary:

- **key process**: diffusion on a complex network
- underlying network: movie-to-movie projection
- boundary condition: ratings given by one user

### Mathematical formalism

the rating of user *i* for movie α we represent as a 5-dimensional vector

$$1 
ightarrow m{v}_{ilpha} = \{1, 0, 0, 0, 0\}^{\mathsf{T}}, \dots, \ 5 
ightarrow m{v}_{ilpha} = \{0, 0, 0, 0, 1\}^{\mathsf{T}}$$

**•** the link between movies  $\alpha$  and  $\beta$  is a 5  $\times$  5 matrix

$$\mathsf{W}_{\alpha\beta} = \sum_{i=1}^{M} \lambda_i \boldsymbol{v}_{i\alpha} \boldsymbol{v}_{i\beta}^{\mathsf{T}}$$

• here  $\lambda_i$  is the weight of each contribution of user *i* 

### Mathematical formalism

the rating of user *i* for movie α we represent as a 5-dimensional vector

$$1 
ightarrow m{v}_{ilpha} = \{1, 0, 0, 0, 0\}^{\mathsf{T}}, \dots, \ 5 
ightarrow m{v}_{ilpha} = \{0, 0, 0, 0, 1\}^{\mathsf{T}}$$

**•** the link between movies  $\alpha$  and  $\beta$  is a 5  $\times$  5 matrix

$$\mathsf{W}_{\alpha\beta} = \sum_{i=1}^{M} \lambda_i \boldsymbol{v}_{i\alpha} \boldsymbol{v}_{i\beta}^{\mathsf{T}}$$

• here  $\lambda_i$  is the weight of each contribution of user *i* 

for a user who has rated  $k_i$  movies we use  $\lambda_i = 1/(k_i - 1)$ 

Zhang et al (University of Fribourg)

## The diffusion process

- matrices  $W_{\alpha\beta}$  form the overall symmetric matrix W (5*N* × 5*N*)
- by the column normalization of W we obtain Ω which describes the diffusion process on the movie-to-movie network

## The diffusion process

• matrices  $W_{\alpha\beta}$  form the overall symmetric matrix W (5 $N \times 5N$ )

- by the column normalization of W we obtain Ω which describes the diffusion process on the movie-to-movie network
- Ω acts on the 5N-dimensional "state" vector h
  - elements 1-5 correspond to movie 1
  - elements 6-10 correspond to movie 2

...

#### Boundary conditions

■ for a given user we set *h*<sub>0</sub> according to the expressed ratings

$$h_0 = \{\underbrace{1, 0, 0, 0, 0}_{1 \text{ for movie 1}}, \underbrace{0, 0, 0, 1, 0}_{4 \text{ for movie 2}}, \dots\}^{\mathsf{T}}.$$

■ if the rating has not been given yet, we set only zeros for this movie

then we iterate using the equation

$$\boldsymbol{h}_{n+1} = \hat{\Omega} \boldsymbol{h}_n$$

Ω differs from Ω in the fact that it preserves expressed opinions of the given user

Zhang et al (University of Fribourg)

#### Interpretation of the results

- after *n*<sub>max</sub> iterations we stop
- e.g. for the movie X (not rated yet by the given user) we obtain  $\{0.1, 0.1, 0.4, 0.3, 0.0\}^T$
- the standard weighted average transforms to a scalar value

$$\hat{\nu} = \frac{0.1 \times 1 + 0.1 \times 2 + 0.4 \times 3 + 0.3 \times 4}{0.1 + 0.1 + 0.3 + 0.4} = \mathbf{3.0}$$

this is the prediction for movie X

#### The polarization problem



Zhang et al (University of Fribourg)

3

### Solution to the polarization problem

we unify the ratings by the linear transformation

$$\mathbf{v}_{ilpha} 
ightarrow \mathbf{M}_i + (\mathbf{v}_{ilpha} - \mu_i) \, rac{\mathbf{S}_i}{\sigma_i}$$

- μ<sub>i</sub> and σ<sub>i</sub> is the avearage rating and the standard deviation of ratings for user i
- *M<sub>i</sub>* and *S<sub>i</sub>* is the avearage rating and the standard deviation of ratings for the whole society (only movies rated by user *i* taken into account)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### $\mathsf{W}_{lphaeta}$

э

イロト イヨト イヨト イヨト

 $egin{array}{c} \mathsf{W}_{lphaeta} \ \downarrow \ \mathsf{W} \end{array}$ 

э

イロト イヨト イヨト イヨト

 $egin{array}{c} \mathsf{W}_{lphaeta} \ \downarrow \ \mathsf{W} \ \downarrow \ arphi \ arph$ 

| Zhang et al | (University | y of Fribourg) |
|-------------|-------------|----------------|
|-------------|-------------|----------------|

Recommendation by diffusion

ECCS'07 Satellite Workshop 11 / 15

э

 $egin{array}{c} {\sf W}_{lphaeta} \ \downarrow \ {\sf W} \ \downarrow \ \Omega \ \downarrow \ \hat{\Omega} \end{array}$ 

| Zhang et al | (University | of Fribourg) |
|-------------|-------------|--------------|
|-------------|-------------|--------------|

Recommendation by diffusion

ECCS'07 Satellite Workshop 11 / 15

-2



Zhang et al (University of Fribourg)

Recommendation by diffusion

ECCS'07 Satellite Workshop 11 / 15



Zhang et al (University of Fribourg)

Recommendation by diffusion

ECCS'07 Satellite Workshop 11 / 15

#### Numerical tests

data of GroupLens project (www.grouplens.org)

- 943 users, 1682 movies, 100 000 ratings
- sparsity around 6%

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Numerical tests

- data of GroupLens project (www.grouplens.org)
  - 943 users, 1682 movies, 100 000 ratings
  - sparsity around 6%
- randomly chosen  $n = 10\,000$  ratings we move to probe  $\mathcal{P}$
- the remaining 90 000 ratings we use to predict the deleted
- two standard error measures of the prediction performance

$$\mathsf{RMSE} = \left[\frac{1}{n} \sum_{(i,\alpha) \in \mathcal{P}} (\mathbf{v}_{i\alpha} - \hat{\mathbf{v}}_{i\alpha})^2\right]^{1/2}$$
$$\mathsf{MAE} = \frac{1}{n} \sum_{(i,\alpha) \in \mathcal{P}} |\mathbf{v}_{i\alpha} - \hat{\mathbf{v}}_{i\alpha}|$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Performance against the number of iterations



- 3 →

#### RMSE values for the tested methods

| method            | no unification | with unification |
|-------------------|----------------|------------------|
| movie average     | 1.18           | 1.01             |
| correlation-based | 1.09           | 1.09             |
| diffusion-based   | 1.00           | 0.93             |

#### RMSE values for the tested methods

| method            | no unification | with unification |
|-------------------|----------------|------------------|
| movie average     | 1.18           | 1.01             |
| correlation-based | 1.09           | 1.09             |
| diffusion-based   | 1.00           | 0.93             |

#### observations:

 movie average is the simplest method but with unification it performs well

#### RMSE values for the tested methods

| method            | no unification | with unification |
|-------------------|----------------|------------------|
| movie average     | 1.18           | 1.01             |
| correlation-based | 1.09           | 1.09             |
| diffusion-based   | 1.00           | 0.93             |

#### observations:

- movie average is the simplest method but with unification it performs well
- substraction of the user average µ<sub>i</sub> is a part of correlation-based methods and thus unification does not improve performance here

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### RMSE values for the tested methods

| method            | no unification | with unification |
|-------------------|----------------|------------------|
| movie average     | 1.18           | 1.01             |
| correlation-based | 1.09           | 1.09             |
| diffusion-based   | 1.00           | 0.93             |

#### observations:

- movie average is the simplest method but with unification it performs well
- substraction of the user average µ<sub>i</sub> is a part of correlation-based methods and thus unification does not improve performance here
- the diffusion-based method outperforms the other two

#### Thank You for Your attention

2

イロト イヨト イヨト イヨト