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The playground

available data:
ratings from M users for N movies
integer scale: 1 (very bad), 2, 3, 4, 5 (perfect)

both M and N can be very large
thus we need an efficient recommendation method

prediction methods already available:
average rating
(recommendation by overall “quality”)
correlation based
(recommendation by the user-user similarity)
. . .
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Representations of the data

available ratings: weighted bipartite graph

movie 1 movie 2 movie 3
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5 3 4

movie-to-movie projection of the data
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Diffusion in the movie-to-movie network

opinions expressed by a particular user spread over the network

1 1

2 2

3 3
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movie X movie Y
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movie X movie Y

summary:
key process: diffusion on a complex network
underlying network: movie-to-movie projection
boundary condition: ratings given by one user
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Mathematical formalism

the rating of user i for movie α we represent as a 5-dimensional
vector

1 → v iα = {1, 0, 0, 0, 0}T, . . . , 5 → v iα = {0, 0, 0, 0, 1}T

the link between movies α and β is a 5× 5 matrix

Wαβ =
M∑

i=1

λiv iαvT
iβ

here λi is the weight of each contribution of user i

for a user who has rated ki movies we use λi = 1/(ki − 1)
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The diffusion process

matrices Wαβ form the overall symmetric matrix W (5N × 5N)

by the column normalization of W we obtain Ω which describes
the diffusion process on the movie-to-movie network

Ω acts on the 5N-dimensional “state” vector h
elements 1-5 correspond to movie 1
elements 6-10 correspond to movie 2
. . .
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Boundary conditions

for a given user we set h0 according to the expressed ratings

h0 = {1, 0, 0, 0, 0︸ ︷︷ ︸
1 for movie 1

, 0, 0, 0, 1, 0︸ ︷︷ ︸
4 for movie 2

, . . . }T.

if the rating has not been given yet, we set only zeros for this movie

then we iterate using the equation

hn+1 = Ω̂hn

Ω̂ differs from Ω in the fact that it preserves expressed opinions
of the given user

Zhang et al (University of Fribourg) Recommendation by diffusion ECCS’07 Satellite Workshop 7 / 15



Interpretation of the results

after nmax iterations we stop

e.g. for the movie X (not rated yet by the given user) we obtain
{0.1, 0.1, 0.4, 0.3, 0.0}T

the standard weighted average transforms to a scalar value

v̂ =
0.1× 1 + 0.1× 2 + 0.4× 3 + 0.3× 4

0.1 + 0.1 + 0.3 + 0.4
= 3.0

this is the prediction for movie X
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The polarization problem
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Solution to the polarization problem

we unify the ratings by the linear transformation

viα → Mi + (viα − µi)
Si

σi

µi and σi is the avearage rating and the standard deviation of
ratings for user i
Mi and Si is the avearage rating and the standard deviation of
ratings for the whole society
(only movies rated by user i taken into account)
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Summary of the algorithm

unification
↓

Wαβ

↓
W
↓
Ω
↓
Ω̂
↓

Ω̂nh0

↓
repersonalization
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Numerical tests

data of GroupLens project (www.grouplens.org)
943 users, 1682 movies, 100 000 ratings
sparsity around 6%

randomly chosen n = 10 000 ratings we move to probe P

the remaining 90 000 ratings we use to predict the deleted

two standard error measures of the prediction performance

RMSE =

[
1
n

∑
(i,α)∈P

(viα − v̂iα)2
]1/2

MAE =
1
n

∑
(i,α)∈P

|viα − v̂iα|
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Performance against the number of iterations
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Comparison with standard methods

RMSE values for the tested methods
method no unification with unification

movie average 1.18 1.01
correlation-based 1.09 1.09

diffusion-based 1.00 0.93

observations:
movie average is the simplest method but with unification it
performs well
substraction of the user average µi is a part of correlation-based
methods and thus unification does not improve performance here
the diffusion-based method outperforms the other two
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Thank You for Your attention
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