# Network metrics for reputation and quality in scholarly data

#### Matúš Medo

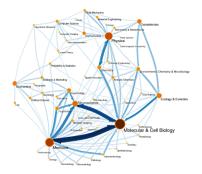
University of Fribourg, Switzerland

Symposium "Scientometric Maps and Dynamic Models of Science and Scientific Collaboration Networks"

10 March 2016, Regensburg

## Part 1

## Network-driven reputation in online scientific communities

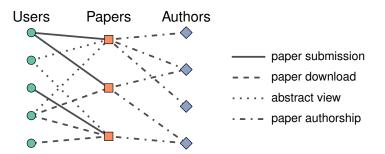


## The setting

- Econophysics Forum: a web site for researchers and practitioners in econophysics and finance (www.unifr.ch/econophysics)
- Weblog data collected from 6th July 2010 to 31st March 2013 (1000 days in total)
- After data cleaning: 5071 users, 844 papers, 29748 links

## The setting

- Econophysics Forum: a web site for researchers and practitioners in econophysics and finance (www.unifr.ch/econophysics)
- Weblog data collected from 6th July 2010 to 31st March 2013 (1000 days in total)
- After data cleaning: 5071 users, 844 papers, 29748 links

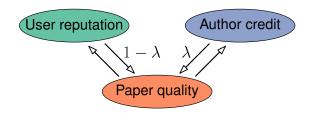


## The basic idea

- Goal: to estimate paper quality from the feedback the paper has among the users
- But: papers also have authors—take their credit into account too
- In summary: user reputation R, paper quality/fitness F, and author credit A mutually depend on each other
  - Similar approach: PageRank, HITS, bipartite HITS, ...

## The basic idea

- Goal: to estimate paper quality from the feedback the paper has among the users
- But: papers also have authors—take their credit into account too
- In summary: user reputation R, paper quality/fitness F, and author credit A mutually depend on each other
  - Similar approach: PageRank, HITS, bipartite HITS, ...



## The QRC algorithm (Liao et al, 2014)

. .

Users: 
$$R_{i} = \frac{1}{k_{i}^{\theta_{R}}} \sum_{\alpha=1}^{M} w_{i\alpha}(F_{\alpha} - \rho_{F}\bar{F})$$
 (1)  
Authors:  $A_{m} = \frac{1}{d_{m}^{\phi_{A}}} \sum_{\alpha=1}^{M} P_{m\alpha}(F_{\alpha} - \rho_{A}\bar{F})$  (2)  
Papers:  $F_{\alpha} = \frac{1-\lambda}{k_{\alpha}^{\theta_{F}}} \sum_{i=1}^{N} w_{i\alpha}(R_{i} - \rho_{R}\bar{R}) + \frac{\lambda}{d_{\alpha}^{\phi_{P}}} \sum_{m=1}^{O} P_{m\alpha}A_{m}$  (3)

#### Here:

- $w_{i\alpha}$ : weights of user-paper connections
- $P_{m\alpha}$ : paper authorship

3

## The QRC algorithm (Liao et al, 2014)

. .

Users: 
$$R_{i} = \frac{1}{k_{i}^{\theta_{R}}} \sum_{\alpha=1}^{M} w_{i\alpha}(F_{\alpha} - \rho_{F}\bar{F})$$
 (1)  
Authors:  $A_{m} = \frac{1}{d_{m}^{\phi_{A}}} \sum_{\alpha=1}^{M} P_{m\alpha}(F_{\alpha} - \rho_{A}\bar{F})$  (2)  
Papers:  $F_{\alpha} = \frac{1-\lambda}{k_{\alpha}^{\theta_{F}}} \sum_{i=1}^{N} w_{i\alpha}(R_{i} - \rho_{R}\bar{R}) + \frac{\lambda}{d_{\alpha}^{\phi_{P}}} \sum_{m=1}^{O} P_{m\alpha}A_{m}$  (3)

#### Here:

- $w_{i\alpha}$ : weights of user-paper connections
- $P_{m\alpha}$ : paper authorship

•  $\rho_F, \rho_A, \rho_B > 0$ : punishment for connections with low-rated nodes

 $\bullet$   $\theta_R, \theta_F, \phi_A, \phi_P$ : they decide whether we cumulate or average

Matúš Medo (Uni Fribourg)

1

## Context & the parametrization

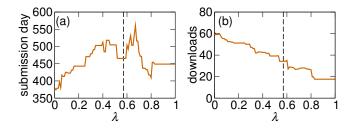
- This is similar to Kleinberg's famous HITS, only with three layers
- Even more similar: Eigenrumor (Fujimura and Tanimoto, 2005) which has three layers but only two scores and different normalization

## Context & the parametrization

- This is similar to Kleinberg's famous HITS, only with three layers
- Even more similar: Eigenrumor (Fujimura and Tanimoto, 2005) which has three layers but only two scores and different normalization
- Our choice of parameters (motivated by artificial simulations and common sense)
  - $\theta_Q = 0$  (paper quality is a sum over all users who collect it)
  - $\theta_R = 1$  (user reputation is an average over all collected papers)
  - $\rho_F = \rho_R = \rho_A = 0$  (no penalty for connections with bad nodes)
  - $\phi_A = 0$  (author credit is a sum over all authored papers)
  - $\phi_P = 1$  (the average author credit contributes to paper quality)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

## Analysis of the top 20 papers



#### $\lambda = 0$ : author credit has no impact on paper quality

Matúš Medo (Uni Fribourg)

Network metrics for scholarly data

## Analysis of the top 20 papers



| Method     | Day                            | Down                          | Cit       | SJR                           |
|------------|--------------------------------|-------------------------------|-----------|-------------------------------|
| random     | $548 \pm 41$                   | $11\pm1$                      | $5\pm1$   | $\textbf{0.5}\pm\textbf{0.1}$ |
| POP        | $299 \pm 37$                   | $69 \pm 7$                    | $15\pm4$  | $\textbf{0.9}\pm\textbf{0.4}$ |
| biHITS     | $264 \pm 34$                   | $56\pm7$                      | $10\pm3$  | $\textbf{0.7}\pm\textbf{0.2}$ |
| Eigenrumor | $444\pm49$                     | $\textbf{30} \pm \textbf{10}$ | $18\pm4$  | $\textbf{0.9}\pm\textbf{0.1}$ |
| QR1        | $\textbf{375} \pm \textbf{49}$ | $59 \pm 9$                    | $15\pm4$  | $\textbf{1.2}\pm\textbf{0.5}$ |
| QR2        | $445\pm47$                     | $54 \pm 9$                    | $14\pm3$  | $\textbf{1.2}\pm\textbf{0.4}$ |
| QRC        | $465\pm60$                     | $34\pm8$                      | $34\pm10$ | $\textbf{2.2}\pm\textbf{0.5}$ |

æ

<ロト < 回 > < 回 > < 回 > .

## Analysis of the top 20 papers

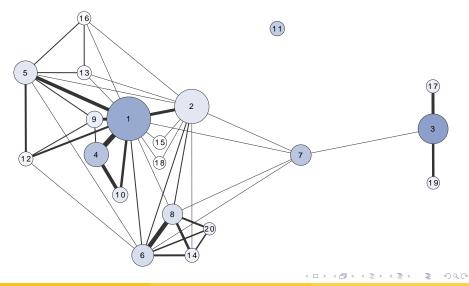
| Rank | Name            | Credit | Papers | Down |
|------|-----------------|--------|--------|------|
| 1    | H. E. Stanley   | 0.65   | 26     | 22   |
| 2    | T. Preis        | 0.39   | 8      | 38   |
| 3    | D. Sornette     | 0.35   | 29     | 17   |
| 4    | S. Havlin       | 0.22   | 19     | 11   |
| 5    | B. Podobnik     | 0.19   | 8      | 21   |
| 6    | D. Y. Kenett    | 0.16   | 11     | 14   |
| 7    | D. Helbing      | 0.16   | 18     | 20   |
| 8    | E. Ben-Jacob    | 0.14   | 10     | 12   |
| 9    | A. M. Petersen  | 0.10   | 6      | 13   |
| 10   | S. V. Buldyrev  | 0.09   | 7      | 13   |
| 11   | JP. Bouchaud    | 0.08   | 16     | 19   |
|      | ÷               | ÷      |        | ÷    |
| 15   | J. J. Schneider | 0.07   | 1      | 83   |
| :    | :               | :      | ÷      | :    |

Matúš Medo (Uni Fribourg)

æ

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

## Analysis of the top 20 papers



## Future work

- Get bigger data to be able to:
  - Study the parameter dependence beyond *λ* (in particular, fractional exponent values)
  - Understand the formation of communities (islands?) of highly-valued authors
  - Study and try avoid "undesired consequences"
  - Study the robustness of results (leave one paper out, etc.)

イロト 不得 トイヨト イヨト

## Part 2

## The trouble with ad hoc metrics (the road to hell is paved with good intentions)



## Part 2

#### The trouble with ad hoc metrics (the road to hell is paved with good intentions)



## One example for all: PageRank

- PageRank is essentially a node centrality (importance) measure
- As opposed to node degree, PageRank gives higher weight to links from important nodes (important according to PageRank)

## One example for all: PageRank

- PageRank is essentially a node centrality (importance) measure
- As opposed to node degree, PageRank gives higher weight to links from important nodes (important according to PageRank)
- Assign score  $p_i^{(t)}$  to each node which initially is uniform:  $p_i^{(0)} = 1/N$

$$p_i^{(t+1)} = c \sum_{j o i} rac{p_j^{(t)}}{k_j} + rac{1-c}{N}$$

- $j \rightarrow i$ : summation over all nodes j that point to i
- Here *N* is the number of nodes and *k<sub>j</sub>* is degree of node *j*
- c is a so-called teleportation parameter (c = 1: no teleportation)
- Iterations: convergence is quick even for Google-size networks

## Two forms of aging in information networks

- The decay of relevance:  $D_R(t)$ 
  - Node relevance influences the in-coming links
  - Medo et al, PRL 107, 238701 (2011)
  - Medo, PRE 89, 032801 (2014)

## Two forms of aging in information networks

- The decay of relevance:  $D_R(t)$ 
  - Node relevance influences the in-coming links
  - Medo et al, PRL 107, 238701 (2011)
  - Medo, PRE 89, 032801 (2014)
- The decay of activity:  $D_A(t)$ 
  - Nodes activity influences the out-going links

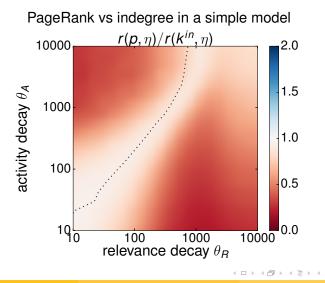
## Two forms of aging in information networks

- **The decay of relevance:**  $D_R(t)$ 
  - Node relevance influences the in-coming links
  - Medo et al, PRL 107, 238701 (2011)
  - Medo, PRE 89, 032801 (2014)
- The decay of activity:  $D_A(t)$ 
  - Nodes activity influences the out-going links
- Assume for simplicity  $D_R(t) \sim \exp(-t/\theta_R)$  and  $D_A(t) \sim \exp(-t/\theta_A)$
- In the model, each node has intrinsic fitness
- The key question:
  - Can PageRank uncover node fitness?
  - More precisely: Can it do it better than node degree?
  - Practically: Compare  $r(p, \eta)$  and  $r(k^{in}, \eta)$

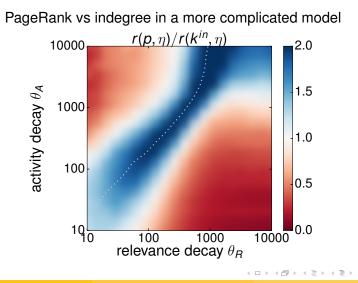
3

- ロ ト - (同 ト - (三 ト - (三 ト - )

## When PageRank fails (Mariani et al, 2016)

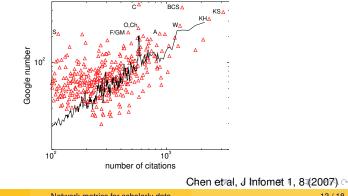


## When PageRank fails (Mariani et al, 2016)



## When PageRank fails: conclusions

1 In citation data, the time scales of relevance and activity decay are very different ( $\Theta_A = 0$  because outgoing links are created only upon arrival). PageRank (and its variants) is still commonly applied here...



## When PageRank fails: conclusions

- 1 In citation data, the time scales of relevance and activity decay are very different ( $\Theta_A = 0$  because outgoing links are created only upon arrival). PageRank (and its variants) is still commonly applied here...
- 2 We need time-dependent metrics/algorithms **based on** and **respecting** microscopical growth rules

## When PageRank fails: conclusions

- 1 In citation data, the time scales of relevance and activity decay are very different ( $\Theta_A = 0$  because outgoing links are created only upon arrival). PageRank (and its variants) is still commonly applied here...
- 2 We need time-dependent metrics/algorithms **based on** and **respecting** microscopical growth rules
- A lazy solution: Do not compare a paper's PageRank value with values of all other papers but only with papers of similar age

## Part 3

## Lazy solutions have something about them...



From: Lazy Lucy

## **Correcting PageRank**

- Compute PageRank score p for all papers in the APS citation data (1893–2009, 449 937 papers)
- Rescaled PageRank of paper i is

$$R_{p,i} = \frac{p_i - \mu_i}{\sigma_i}$$

- Here μ<sub>i</sub> and σ<sub>i</sub> are the mean and standard deviation of p for papers published "close" to paper i
- Outcome is little sensitive to what "close" means
- Rationale: avoid comparison of apples with oranges

## **Correcting PageRank**

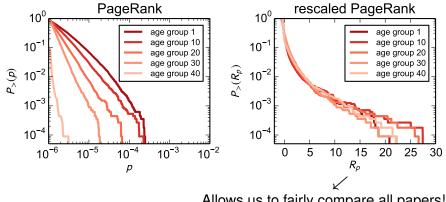
- Compute PageRank score p for all papers in the APS citation data (1893–2009, 449 937 papers)
- Rescaled PageRank of paper i is

$$R_{p,i} = \frac{p_i - \mu_i}{\sigma_i}$$

- Here μ<sub>i</sub> and σ<sub>i</sub> are the mean and standard deviation of p for papers published "close" to paper i
- Outcome is little sensitive to what "close" means
- Rationale: avoid comparison of apples with oranges
- Evaluation based on "milestone letters" announced recently (http://journals.aps.org/prl/50years/milestones)

< ロト < 同ト < ヨト < ヨト

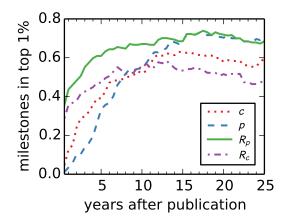
## **Rescaled PageRank: results**



I > < 
 I >
 I

∃ ⊳ ъ

## **Rescaled PageRank: results**



Note: CiteRank is competitive with  $R_p$  in some aspects

Matúš Medo (Uni Fribourg)

## Thank you for your attention

- H. Liao, R. Xiao, G. Cimini, M. Medo, Network-Driven Reputation in Online Scientific Communities, PLoS ONE 9, e112022, 2014
- 2 M. Medo, G. Cimini, S. Gualdi, Temporal effects in the growth of networks, Physical Review Letters 107, 238701, 2011
- 3 M. Medo, Network-based information filtering algorithms: ranking and recommendation, In "Dynamics on and of Complex Networks 2" (Springer, 2013)
- 4 M. Medo, Statistical validation of high-dimensional models of growing networks, Physical Review E 89, 032801, 2014
- 5 M. S. Mariani, M. Medo, Y.-C. Zhang, Ranking nodes in growing networks: When PageRank fails, Scientific Reports 5, 16181, 2015
- 6 M. S. Mariani, M. Medo, Y.-C. Zhang, Quantifying the significance of scientific papers by time-balanced network centrality (almost submitted)













Hao Liao

Rui Xiao Giulio Cimini

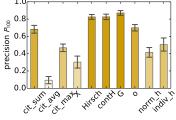
ini Stanislao Gualdi

ualdi Manuel Mariani

riani Yi-Cheng Zhang

## Evaluating researcher performance metrics on artificial datasets (new project with G. Cimini)

- We have good models of information networks
  - Many properties of real datasets can be easily reproduced
- We can use them to grow artificial data of researcher activity
- Goal: compare true researcher "ability" with results of various researcher metrics



- Preliminary results:
- Broader goal: Establish a general simulation and evaluation framework for research activity data