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Part 1

Growth of information networks



Preferential attachment (PA)

A classical network model

Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)

Growth of cities, citations of scientific papers, WWW,. . .

Nodes and links are added with time

Probability that a node acquires a new link
proportional to its current degree

P(i, t) ∼ ki(t)

1

2
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4

Pros: simple, produces a power-law degree distribution

Cons: The power-law degree distribution due to the first nodes

Matúš Medo (Uni Fribourg) Models and algorithms. . . 4 / 24



Preferential attachment (PA)

A classical network model

Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)

Growth of cities, citations of scientific papers, WWW,. . .

Nodes and links are added with time

Probability that a node acquires a new link
proportional to its current degree

P(i, t) ∼ ki(t)

1

2

3

4

Pros: simple, produces a power-law degree distribution

Cons: The power-law degree distribution due to the first nodes

Matúš Medo (Uni Fribourg) Models and algorithms. . . 4 / 24



Preferential attachment (PA)

A classical network model

Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)

Growth of cities, citations of scientific papers, WWW,. . .

Nodes and links are added with time

Probability that a node acquires a new link
proportional to its current degree

P(i, t) ∼ ki(t)

1

2

3

4

Pros: simple, produces a power-law degree distribution

Cons: The power-law degree distribution due to the first nodes

Matúš Medo (Uni Fribourg) Models and algorithms. . . 4 / 24



PA in scientific citation data

Journals of the American Physical Society from 1893 to 2009:
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See also Adamic & Huberman (2000), Redner (2005), Newman (2009),. . .
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Time decay is fundamental
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Growing networks with fitness and aging
(PRL 107, 238701, 2011)

Probability that node i attracts a new link

P(i, t) ∼ ki(t)︸︷︷︸
degree

× fi︸︷︷︸
fitness

×DR(t)︸︷︷︸
aging︸           ︷︷           ︸

relevance

The aging factor DR(t) decays with time: a decay of relevance

The bottom line:
Good: Produces various realistic degree distributions (power-law, etc.)
Bad: Difficult to validate (high-dimensional statistics)
Good: This model explains the data much better than any other
(Medo, Phys Rev E 89, 032801, 2014)
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Fitness and aging: conclusions

PA with fitness and aging as a relevant model for information networks

There are many possible applications: ranking, prediction, . . .

Even better: this establishes a playground!
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Part 2

Temporal bias of PageRank



What is PageRank

PageRank is essentially a node centrality (importance) measure

Simplest centrality: degree (counting the links—local)

Non-local: PageRank (links from important nodes count more)

Assign score p(t)
i to each node which initially is uniform: p(0)

i = 1/N

p(t+1)
i = c

∑
j→i

p(t)
j

kj
+

1 − c
N

j → i are nodes j that point to i

Here N is the number of nodes and kj is degree of node j

c is a so-called teleportation parameter (c = 1: no teleportation)

Iterations: convergence quick even for Google-size networks

1 2 3

4 5

0.04 0.06 0.07

0.43 0.40

Important nodes are those that are pointed by other important nodes
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Two forms of aging in information networks

The decay of relevance: DR(t)
Node relevance influences the in-coming links

The decay of activity: DA (t)
Nodes activity influences the out-going links

time

source target

old nodes recent nodes

A growing network with a quick decay of attractiveness and no decay of activity

Matúš Medo (Uni Fribourg) Models and algorithms. . . 11 / 24



Two forms of aging in information networks

The decay of relevance: DR(t)
Node relevance influences the in-coming links

The decay of activity: DA (t)
Nodes activity influences the out-going links

time

source target

old nodes recent nodes

A growing network with a quick decay of attractiveness and no decay of activity

Matúš Medo (Uni Fribourg) Models and algorithms. . . 11 / 24



Two forms of aging in information networks

The decay of relevance: DR(t)
Node relevance influences the in-coming links

The decay of activity: DA (t)
Nodes activity influences the out-going links

time

source target

old nodes recent nodes

A growing network with a quick decay of attractiveness and no decay of activity

Matúš Medo (Uni Fribourg) Models and algorithms. . . 11 / 24



A model to test the effect of aging

In both cases, we assign fitness fi and activity Ai to nodes

Aging applies to both: DR(t) = exp(−t/θR) and DA (t) = exp(−t/θA )

The probability of node i to create an outgoing link is

Pout
i ∼ AiDA (t − τi)

The probability of node j to receive an incoming link is

P in
j (t) ∼ (k in

j (t) + 1) fj DR(t − τj)

This is our old friend: the relevance model (RM)

A small modification of RM, extended fitness model (EFM), is more
suitable for PageRank use
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The biases of PageRank

RM with slow activity decay (θA = 10, 000)
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The biases of PageRank

Why the new kind of bias?

time

source target

old nodes recent nodes
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The biases of PageRank

PageRank vs indegree in the RM
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The biases of PageRank

PageRank vs indegree in the EFM
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The biases of PageRank: conclusions

1 In citation data, the time scales of relevance and activity decay are
very different (ΘA = 0 because outgoing links are created only upon
arrival). PageRank (and its variants) is still commonly applied here. . .
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Chen et al, J Infomet 1, 8 (2007)

2 We need time-dependent algorithms based on microscopical growth
rules

3 A lazy solution: Do not compare a paper’s PageRank value with
values of all other papers but only with papers of similar age.
Preliminary results seem very promising (see the poster). . .
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Part 3

Discoverers in online social systems



Beyond preferential attachment in social systems

Bipartite user-item data (e.g., who bought what at Amazon.com)
Similar behavior in monopartite social data (user-user)

Previous research shows/assumes that users are driven by popularity
combined with fitness and aging

But is this the whole story?

To find the users who defy popularity, we do the following:
A user makes a discovery when they are among the first 5 users to
collect an eventually highly popular item (top 1% of all items are used
as target)

A new metric, user surprisal, shows that there are users who make
discoveries so often that it cannot be explained by luck
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Discoveries in Amazon data
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Black bars: popularity of collected items when they are collected.
Blue bars: final popularity of collected items.
Red circles: discoveries.
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How to quantify the user success

This concept yields the number of discoveries di for each user

We also know the number of links ki made by each user

How to assess how unusual is a given user?

The overall discovery probability is pD = D/L
Here D =

∑
i di and L =

∑
i ki

Assuming that all users and links are equal, the probability that a user
makes at least di discoveries in ki attempts is

P0(di |ki , pD ,H0) =
ki∑

n=di

(
ki

n

)
pn

D(1 − pD)
ki−n

Motivated by information theory, we introduce user surprisal

si := − ln P0(di |ki , pD ,H0)
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Top users in the Amazon data

Rank ki di ri P0
i si

1 188 59 51.6 10−82 187.6
2 244 50 33.7 10−59 135.3
3 217 35 26.5 10−38 86.4
4 237 26 18.0 10−24 54.4
5 190 24 20.8 10−24 53.8
6 364 26 11.7 10−19 43.5
7 185 18 16.0 10−16 36.1
8 73 11 24.8 10−12 27.6
9 41 9 36.1 10−12 26.4

10 60 10 27.4 10−12 26.2
. . .

But: Is this not just luck?
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Discoverer or a lucky guy?

1 We generate the users’ number of discoveries under the null
hypothesis

2 The generated data are then used to compute “bootstrap” user
surprisal values

3 We check whether a user’s real
surprisal is higher than the
average highest surprisal in
bootstrap realizations
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Is this any useful?

Take young items with only one link and divide them into groups
depending on the surprisal of the user who has collected them

With such extremely limited information
(only the first link for each item),

predictions are difficult,
especially about the future. . .
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The answer: Yes, potentially very useful!
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A network model

Network growth model with to rules reproduces the real data patterns
1 Some users are popularity-driven: ki(t)DR(t)
2 Others are fitness-driven: fi(t)DR(t)

The discoverer behavior can be reproduced
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Model data pose a puzzle to classical ranking algorithms
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Reason: Insightful choices of
the leaders are copied by the
followers. All users ultimately
collect items of the same fit-
ness and an algorithm acting
on a static data snapshot can-
not distinguish them.
Solution: Algorithms that take
time into account adequately.
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A network model

Network growth model with to rules reproduces the real data patterns
1 Some users are popularity-driven: ki(t)DR(t)
2 Others are fitness-driven: fi(t)DR(t)

The discoverer behavior can be reproduced
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Discoverers: conclusions

We find discoverers in almost any information network we look at

There are still many open questions. . .

1 What other influences contribute to the observed discovery patterns?
Social status? Do the users have head start on some items?

2 How best to decide who is a discoverer and who is not?

3 How best to use this information for popularity prediction?

4 How to model this kind of data?
E.g., to which extend do the ordinary users ignore fitness?

5 How does all this translates to monopartite data?

6 There is fine struture—someone is maybe a discoverer in sci-fi movies
but very ordinary in romantic movies; how to approach this?

7 How to use this knowledge to design better algorithms?
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Thank you for your attention

1 M. Medo, G. Cimini, S. Gualdi, Temporal effects in the growth of networks,
Physical Review Letters 107, 238701, 2011

2 Y. Berset, M. Medo, The effect of the initial network configuration on preferential
attachment, European Physical Journal B 86, 260, 2013

3 M. Medo, Network-based information filtering algorithms: ranking and
recommendation, In "Dynamics on and of Complex Networks 2" (Springer, 2013)

4 M. Medo, Statistical validation of high-dimensional models of growing networks,
Physical Review E 89, 032801, 2014

5 M. S. Mariani, M. Medo, Y.-C. Zhang, Ranking nodes in growing networks:
When PageRank fails, arXiv:1509.01476 (accepted in Scientific Reports)

6 M. Medo, M. S. Mariani, A. Zeng, Y.-C. Zhang, Identification and modeling of
discoverers in online social systems, arXiv:1509.01477

Yves Berset Giulio Cimini Stanislao Gualdi Manuel Mariani An Zeng Yi-Cheng Zhang


	mypart
	mypart
	mypart

