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Part 1

Growth of information networks

Matúš Medo (Uni Fribourg) Complexity insights into information filtering 3 / 25



Preferential attachment

A classical network model

Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)

Growth of cities, citations of scientific papers, WWW,. . .

Nodes and links are added with time

Probability that a node acquires a new link
proportional to its current degree

P(i , t) ∼ ki(t)
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Pros: simple, produces a power-law degree distribution
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PA in scientific citation data

Journals of the American Physical Society from 1893 to 2009:
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See also Adamic & Huberman (2000), Redner (2005), Newman (2009),. . .
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Time decay is fundamental

Matúš Medo (Uni Fribourg) Complexity insights into information filtering 6 / 25



The model (PRL 107, 238701, 2011)

Probability that node i attracts a new link

P(i , t) ∼ ki(t)︸︷︷︸
degree

× Ri(t)︸ ︷︷ ︸
relevance

Relevance of every node decays with time
When Ri(t)→ 0, the popularity of nodes eventually saturates

Good news:
Produces various realistic degree distributions (power-law, etc.)
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Datasets

1 Citations among papers published by the APS

2 Citations among the US patents

3 User collections of web bookmarks

4 Paper downloads from the Econophysics Forum

data description label nodes links span/resolution ∆t

APS citations APS 450k 4.7M 117 years/daily 91 days
U.S. patents PAT 3.2M 24M 31 years/yearly 1 year

web bookmarks WEB 2.3M 4.2M 4 years/daily 10 days
paper downloads EF 600 16k 23 months/daily 10 days

Matúš Medo (Uni Fribourg) Complexity insights into information filtering 8 / 25



Decay of relevance
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Future challenges

Other properties of the model networks:
clustering, community structure,. . .

Improved statistical validation
Troubles with high-dimensional statistics
Econophysics Forum data: new model is much more likely
(10410-times) than the second-best model (Eom-Fortunato, 2011)

Knowledge of the dynamics can help select nodes
that are most relevant now =⇒ useful tools?

Theory says: Total relevance matters =⇒ useful tools?
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Part 2
Physics-motivated approach to recommendation
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Recommendation challenge

There is often too much information available
Too many books to read, movies to watch, . . .
How to choose?

Recommender systems analyze data on past user preferences to
predict possible future likes and interests

Many approaches exist:
Collaborative filtering
Content-based analysis
Latent semantic models
Spectral methods
. . .
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Recommendation by random walk

Two-step random walk:
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Key insights

Random walk favors high-degree nodes
They have more ways to receive resources

By contrast, heat diffusion favors low-degree nodes
If you touch many places, your temperature is likely to be average
If you touch a few places, you may get “lucky” and end hot

Interestingly, the two processes are matematically closely related
Their matrices are transpose of each other: M and MT
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Hybridization (PNAS 107, 4511, 2010)
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Result: simultaneous improvement of accuracy and diversity
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Part 3

Crowd-avoidance in recommendation
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The challenge

Traditional recommender systems do not care to how many users
an item gets recommended

Since they often have bias toward popularity, a small number of
winners often emerges

This may be harmful:
Bar recommended to many people becomes overcrowded
In the long term, our information horizons shrink

bosons fermions
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Crowd-avoidance in recommendation
(EPL 101, 20008, 2013)

Easy to achieve ex post:
1 A recommendation algorithm produces a ranked list of items for

each user

2 We impose maximal occupancy m for every item

An example with m = 1

user 1

user 2 user 3

item 7X

item 3X item 7

item 3

item 4 item 2X

Two ways to enforce occupation:
User-by-user (local optimization)

Minimize the total rank of chosen items (global optimization)
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Test case

Netflix subset with 2000 users

One object recommended to each user (m = 1)

There is no reason for real crowd avoidance in DVD rentals

Country-production data would be a better test candidate but. . .
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Crowd-avoidance enhances diversity
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Crowd-avoidance enhances accuracy
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Is it because our recommendations are wrong?
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The (probably) correct explanation

Recommendation algorithms are often biased
Typically towards popular items but less tangible reasons exist too

Hypothesis: crowd-avoidance suppresses these biases
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Crowd-avoidance: Summary

Crowd-avoidance can improve both accuracy and diversity of
recommendation

A rare case where constraints improve the outcome

To do

How best to introduce occupancy constraints?
Constraints heterogeneous over objects
Approaches to global optimization

Study real data with crowd avoidance
Country-production data
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Thank you for your attention!

Questions?
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