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Part 1

Growth of information networks
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Preferential attachment

m A classical network model
m Yule (1925), Simon (1955), Price (1976), Barabasi & Albert (1999)
m Growth of cities, citations of scientific papers, WWW,. ..
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m A classical network model
m Yule (1925), Simon (1955), Price (1976), Barabasi & Albert (1999)
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m Nodes and links are added with time

m Probability that a node acquires a new link 2
proportional to its current degree 3 1
P(i,t) ~ ki(t) )
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Preferential attachment

m A classical network model
m Yule (1925), Simon (1955), Price (1976), Barabasi & Albert (1999)
m Growth of cities, citations of scientific papers, WWW,. ..

m Nodes and links are added with time

m Probability that a node acquires a new link 2
proportional to its current degree 3 1
P(i,t) ~ ki(t) )

m Pros: simple, produces a power-law degree distribution

Matus Medo (Uni Fribourg) Complexity insights into information filtering 4/25



PA in scientific citation data

Journals of the American Physical Society from 1893 to 2009:
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See also Adamic & Huberman (2000), Redner (2005), Newman (2009),. ..

Matus Medo (Uni Fribourg) Complexity insights into information filtering 5/25



PA in scientific citation data

Journals of the American Physical Society from 1893 to 2009:
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Time decay is fundamental

PEm] Thye &cm ﬁnrk Times.

TITANIC SINKS FOUR HOURS AFTER H!TTING ICEBERG
866 RESCUED BY CARPATHIA, PROBABLY 1250 PERISH;
ISMAY SAFE, MRS, ASTOR MAYBE, NOTED NAMES MISSING
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The model (PRL 107, 238701, 2011)

m Probability that node i attracts a new link

P(i, t) ~ k/(f) X R/(t)
degree  relevance

m Relevance of every node decays with time
m When R;(t) — 0, the popularity of nodes eventually saturates

Matus Medo (Uni Fribourg) Complexity insights into information filtering 7125



The model (PRL 107, 238701, 2011)

m Probability that node i attracts a new link

P(i, t) ~ k/(f) X R/(t)
degree  relevance

m Relevance of every node decays with time
m When R;(t) — 0, the popularity of nodes eventually saturates

m Good news:
m Produces various realistic degree distributions (power-law, etc.)
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Datasets

Citations among papers published by the APS
Citations among the US patents
User collections of web bookmarks

Paper downloads from the Econophysics Forum

data description  label nodes links  span/resolution At

APS citations  APS 450k 4.7M 117 years/daily 91 days
U.S. patents PAT 3.2M  24M 31 years/yearly 1 year
web bookmarks WEB  2.3M 4.2M 4 years/daily 10 days
paper downloads EF 600 16k 23 months/daily 10 days
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Decay of relevance

10°E 1 3 10°E 1 1 E|
APS 1 P PAT 1
o lOlg 3 S ]
E 10" 3 10°F 1
(5] E = E ]
(= C ] r 1
I = - L ]
E 10 % E [ ]
E 12— \ ! ! ! | | |
s 0 10 20 30 40 50 60 10 15 20 25 30
. 2
é 10°E \ \ T 3 3
g 5 DEL 1 ]
o r 1 3
& 10'F E B
= E
[ 7 ]
% 0 ) ]
10 Ew E

ow
o=

| | | -2 | | | | |
300 600 900 1200 190 100 200 300 400 500 600
age t in years (top) or days (bottom)

Matus Medo (Uni Fribourg) Complexity insights into information filtering 9/25



Future challenges

m Other properties of the model networks:
clustering, community structure,. ..

m Improved statistical validation
m Troubles with high-dimensional statistics
m Econophysics Forum data: new model is much more likely
(10*19-times) than the second-best model (Eom-Fortunato, 2011)

m Knowledge of the dynamics can help select nodes
that are most relevant now = useful tools?

m Theory says: Total relevance matters —- useful tools?
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Part 2

Physics-motivated approach to recommendation
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Recommendation challenge

m There is often too much information available

m Too many books to read, movies to watch, ...

m How to choose?
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Recommendation challenge

m There is often too much information available

m Too many books to read, movies to watch, ...
m How to choose?

m Recommender systems analyze data on past user preferences to
predict possible future likes and interests

m Many approaches exist:
Collaborative filtering
m Content-based analysis
m Latent semantic models
]
]

Spectral methods
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Recommendation by random walk

Two-step random walk:

START

1
user 1

0
user 2

0
user 3

1
user 4

0
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Recommendation by random walk

Two-step random walk:

START STEP 1

1

user 1 5/6
0

user 2 5/6
0 —

user 3 1/3
1

user 4 0
0
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Recommendation by random walk

Two-step random walk:

START STEP 1 STEP 2

1 19/24
user 1 5/6

0 5/24
user 2 5/6

0o —» — 3/8
user 3 1/3

1 5/8
user 4 0

0 0
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Key insights

m Random walk favors high-degree nodes
m They have more ways to receive resources

m By contrast, heat diffusion favors low-degree nodes

m If you touch many places, your temperature is likely to be average
m If you touch a few places, you may get “lucky” and end hot
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Key insights

m Random walk favors high-degree nodes
m They have more ways to receive resources

m By contrast, heat diffusion favors low-degree nodes

m If you touch many places, your temperature is likely to be average
m If you touch a few places, you may get “lucky” and end hot

m Interestingly, the two processes are matematically closely related
m Their matrices are transpose of each other: M and MT
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Hybridization (PNAS 107, 4511, 2010)

HEAT RAND
DIFF WALK

MT M
NS
H(A)
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Hybridization (PNAS 107, 4511, 2010)
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Result: simultaneous improvement of accuracy and diversity
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Part 3

Crowd-avoidance in recommendation
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The challenge

m Traditional recommender systems do not care to how many users
an item gets recommended

m Since they often have bias toward popularity, a small number of
winners often emerges
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The challenge

m Traditional recommender systems do not care to how many users
an item gets recommended

m Since they often have bias toward popularity, a small number of
winners often emerges

m This may be harmful:

m Bar recommended to many people becomes overcrowded
m In the long term, our information horizons shrink
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Crowd-avoidance in recommendation
(EPL 101, 20008, 2013)

m Easy to achieve ex post:

A recommendation algorithm produces a ranked list of items for
each user

We impose maximal occupancy m for every item
An example with m = 1

user 1
item 7v
item 3
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Crowd-avoidance in recommendation
(EPL 101, 20008, 2013)

m Easy to achieve ex post:

A recommendation algorithm produces a ranked list of items for
each user

We impose maximal occupancy m for every item
An example with m = 1

user 1 user 2 user 3
item7v item3v item?7
item 3 item 4 item 2V

m Two ways to enforce occupation:
m User-by-user (local optimization)

m Minimize the total rank of chosen items (global optimization)

Matus Medo (Uni Fribourg) Complexity insights into information filtering 18/25



Test case

m Netflix subset with 2000 users

m One object recommended to each user (m = 1)
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Test case

m Netflix subset with 2000 users
m One object recommended to each user (m = 1)
m There is no reason for real crowd avoidance in DVD rentals

m Country-production data would be a better test candidate but. ..
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Crowd-avoidance enhances diversity

Mot = (D ka)*/ DK

effective number of items D
[39)
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Crowd-avoidance enhances accuracy

0.301

precision P(m)

o
—_
=

o

to

(=}
T

—— local optimization
--- global optimization

Mati$ Medo (Uni Fribourg)

10' 10”
maximal occupancy m

Complexity insights into information filtering

21/25



Is it because our recommendations are wrong?
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Is it because our recommendations are wrong?
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The (probably) correct explanation

m Recommendation algorithms are often biased
m Typically towards popular items but less tangible reasons exist too
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The (probably) correct explanation

m Recommendation algorithms are often biased
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Crowd-avoidance: Summary

m Crowd-avoidance can improve both accuracy and diversity of
recommendation

m A rare case where constraints improve the outcome
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Crowd-avoidance: Summary

m Crowd-avoidance can improve both accuracy and diversity of
recommendation

m A rare case where constraints improve the outcome

To do

m How best to introduce occupancy constraints?

m Constraints heterogeneous over objects
m Approaches to global optimization

m Study real data with crowd avoidance
m Country-production data
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Thank you for your attention!

Questions?
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