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We live in the information age
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We live in the information age

Information is created, spreads, fades away
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We live in the information age

Information is created, spreads, fades away
this talk
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Preferential attachment (PA)

m A classical network model

m Yule (1925), Simon (1955), Price (1976), Barabasi & Albert (1999)
m Growth of cities, citations of scientific papers, WWW,. ..
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m Nodes and links are added with time 2

m Probability that a node acquires a new link 3
proportional to its current degree: P(i,t) ~ ki(t) + A
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Preferential attachment (PA)

m A classical network model

m Yule (1925), Simon (1955), Price (1976), Barabasi & Albert (1999)
m Growth of cities, citations of scientific papers, WWW,. ..

m Nodes and links are added with time 2

m Probability that a node acquires a new link 3
proportional to its current degree: P(i,t) ~ ki(t) + A

m Pros: simplicity, resulting power-law degree distribution
m Cons: simplicity (deviations from the model observed in reality)
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PA in scientific citation data
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PA in scientific citation data
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See also Adamic & Huberman (2000), Redner (2005), Newman (2009),. ..
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Time decay is fundamental

PEm] Thye &cm ﬁnrk Times.

TITANIC SINKS FOUR HOURS AFTER H!TTING ICEBERG
866 RESCUED BY CARPATHIA, PROBABLY 1250 PERISH;
ISMAY SAFE, MRS, ASTOR MAYBE, NOTED NAMES MISSING
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Two generalizations of the basic PA

m Fitness model (Bianconi & Barabasi, 2001):

m Each node has fitness that influences the attachment probability

'D(Iv t) ~ f,k,(t)
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Two generalizations of the basic PA

m Fitness model (Bianconi & Barabasi, 2001):

m Each node has fitness that influences the attachment probability

P(i, t) ~ fiki(t)
m Aging of sites (Dorogovtsev & Mendes, 2000):

m For a node that appeared at time s, the attachment rate is

P(i,t) ~ ki(t)/(t — ;)"
m They both have their problems. ..
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Outline for the rest

Formulate a new model
Present empirical evidence

Discuss the implications
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The model (PRL 107, 238701, 2011)

We combine heterogeneous fitness with aging
m Fitness with aging = relevance

P(i, t) ~ Ri(t)ki(t)

Nodes are not made equal!

m For example, initial values R;(0) are random
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Solving the model
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Solving the model

ki(ORi(t)  _ ki(t)Ri(t)
Y k(OR(t) A=

4

(kf') = exp (% /OOOR,'(t)dt> = exp (T;/%)

D i, 1) —
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Solving the model

___k®Ri(t) k(DAL
Y k(R A=

4

(kf') = exp (% /OOOR,'(t)dt> = exp (T;/%)

m A;(t) matters little, it's T; what’s important

m Q* can be set to achieve desired (k)
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Degree distributions

m k[ (T;) fluctuates little = heterogeneoity is needed!

(KF(T)) = exp (Ty/)

Matus Medo (Fribourg) Growth of information networks 10/19



Degree distributions

m k[ (T;) fluctuates little = heterogeneoity is needed!
(KF(T)) = exp (Ty/)

m Some examples:
o(T) normally distributed = log-normal P(k)
o(T) with exponential tail = P(k) with a power-law tail
o(T) ~e T — P(k) ~ k=3 (exactly as for PAl)
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Datasets

Citations among papers published by the APS
Citations among the US patents
User collections of web bookmarks

Paper downloads from the Econophysics Forum

data description  label nodes links  span/resolution At

APS citations  APS 450k 4.7M 117 years/daily 91 days
U.S. patents PAT 3.2M  24M 31 years/yearly 1 year
web bookmarks WEB  2.3M 4.2M 4 years/daily 10 days
paper downloads EF 600 16k 23 months/daily 10 days
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Empirical relevance

m Empirical relevance of paper i at time t: Xj(t, At)

number of citations received by i in (t,t + At) Ak
expected number of citations according to PA k(t)

Xi(t, Ab) :=

m When PA works perfectly, Xi(t, At) =1
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Decay of relevance
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Heterogeneity of total relevance

number of items with total relevance ZXT
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How good model do we have?

m Robust statistical validation needed
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How good model do we have?

m Robust statistical validation needed

m Maximum likelihood estimation: maximize £(D|M)
m D is given data (growing network)
m M is a parametrized network model
m L is likelihood of the data for a given model

m Problems:

m Dimensionality: number of model parameters proportional
to the number of nodes (“high-dimensional statistics”)

m Data size: computation of likelihood is costly
m Convergence: lack of, shallow maximum, validation
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Models competing

[ Links choose target node at random

PA with an additive term: P(i,t) ~ ki(t) + A

PA with heterogeneous additive term: P(i, t) ~ k;(t) + A;
Eom-Fortunato model: P(i, t) ~ kj(t) + Ai(t)

PA with relevance: P(i, t) ~ Ri(t)(ki(t) + A)
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MLE results - Econophysics Forum data

model max L(D|M) parameters

My —-5.55+0.00 0
M, —5.52 +£0.01 1
M, —4.44 + 0.01 N
Mz —4.00 + 0.01 N+3
My —3.94 + 0.01 N+4
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MLE results - Econophysics Forum data

model max L(D|M) parameters 10
My, —5.55+0.00 0
M, —5.52 £ 0.01 1
M,  —4.44 1+ 0.01 N
M;  —4.00+0.01 N+3 &
M,  —3.94+0.01 N+ 4 10300 460600

entrance time

m Pure PA (M;) almost as bad as the benchmark model Mg
m Heterogeneous additive term (Ms) has little substance

m Difference M, vs M3 seems small but corresponds to D being
10*10-times more likely under M, than under M
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Open problems

m Study clustering coefficient and degree correlations

m Directed nature of the citation network

m Accelerating growth of the network

m Gradual fragmentation into related yet independent fields

m Q(t) without a stationary value
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Open problems

m Study clustering coefficient and degree correlations

m Directed nature of the citation network

m Accelerating growth of the network

m Gradual fragmentation into related yet independent fields

m Q(t) without a stationary value

m Convergence problems for some other datasets

m Knowledge of the dynamics can help select currently most
relevant nodes: Ak/k matters but. ..
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Thank you for your attention!

Questions?
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