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We live in the information age

Information is created, spreads, fades away︸ ︷︷ ︸
this talk
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Preferential attachment (PA)

A classical network model

Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)

Growth of cities, citations of scientific papers, WWW,. . .

Nodes and links are added with time

Probability that a node acquires a new link
proportional to its current degree: P(i , t) ∼ ki(t) + A
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Pros: simplicity, resulting power-law degree distribution

Cons: simplicity (deviations from the model observed in reality)
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PA in scientific citation data
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See also Adamic & Huberman (2000), Redner (2005), Newman (2009),. . .
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Time decay is fundamental
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Two generalizations of the basic PA

Fitness model (Bianconi & Barabási, 2001):

Each node has fitness that influences the attachment probability

P(i , t) ∼ fiki(t)

Aging of sites (Dorogovtsev & Mendes, 2000):

For a node that appeared at time s, the attachment rate is

P(i , t) ∼ ki(t)/(t − τi)
α

They both have their problems. . .
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Outline for the rest

1 Formulate a new model

2 Present empirical evidence

3 Discuss the implications
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The model (PRL 107, 238701, 2011)

1 We combine heterogeneous fitness with aging
Fitness with aging = relevance

P(i , t) ∼ Ri(t)ki(t)

2 Nodes are not made equal!

For example, initial values Ri (0) are random
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Solving the model

P(i , t) =
ki(t)Ri(t)∑t
j=1 kj(t)Rj(t)

=
ki(t)Ri(t)

Ω(t)

d〈ki (t)〉
dt ≈

≈ Ω∗

⇓
〈
kF

i
〉

= exp
( 1

Ω∗

∫ ∞
0

Ri(t) dt
)

= exp
(
Ti/Ω∗

)

Ri(t) matters little, it’s Ti what’s important

Ω∗ can be set to achieve desired 〈k〉
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Degree distributions

kF
i (Ti) fluctuates little =⇒ heterogeneoity is needed!〈

kF
i (Ti)

〉
= exp

(
Ti/Ω∗

)

Some examples:

1 %(T ) normally distributed =⇒ log-normal P(k)

2 %(T ) with exponential tail =⇒ P(k) with a power-law tail

3 %(T ) ∼ e−αT =⇒ P(k) ∼ k−3 (exactly as for PA!)
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Datasets

1 Citations among papers published by the APS

2 Citations among the US patents

3 User collections of web bookmarks

4 Paper downloads from the Econophysics Forum

data description label nodes links span/resolution ∆t

APS citations APS 450k 4.7M 117 years/daily 91 days
U.S. patents PAT 3.2M 24M 31 years/yearly 1 year

web bookmarks WEB 2.3M 4.2M 4 years/daily 10 days
paper downloads EF 600 16k 23 months/daily 10 days
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Empirical relevance

Empirical relevance of paper i at time t : Xi(t ,∆t)

Xi(t ,∆t) :=
number of citations received by i in (t , t + ∆t)
expected number of citations according to PA

∼ ∆k
k(t)

When PA works perfectly, Xi (t ,∆t) = 1
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Decay of relevance
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Heterogeneity of total relevance
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How good model do we have?

Robust statistical validation needed

Maximum likelihood estimation: maximize L(D|M)

D is given data (growing network)

M is a parametrized network model

L is likelihood of the data for a given model

Problems:
Dimensionality: number of model parameters proportional
to the number of nodes (“high-dimensional statistics”)

Data size: computation of likelihood is costly

Convergence: lack of, shallow maximum, validation
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Models competing

0 Links choose target node at random

1 PA with an additive term: P(i , t) ∼ ki(t) + A

2 PA with heterogeneous additive term: P(i , t) ∼ ki(t) + Ai

3 Eom-Fortunato model: P(i , t) ∼ ki(t) + Ai(t)

4 PA with relevance: P(i , t) ∼ Ri(t)
(
ki(t) + A

)
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MLE results - Econophysics Forum data

model maxL(D|M) parameters

M0 −5.55± 0.00 0
M1 −5.52± 0.01 1
M2 −4.44± 0.01 N
M3 −4.00± 0.01 N + 3
M4 −3.94± 0.01 N + 4
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Pure PA (M1) almost as bad as the benchmark model M0

Heterogeneous additive term (M3) has little substance
Difference M4 vs M3 seems small but corresponds to D being
10410-times more likely under M4 than under M3
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Open problems

Study clustering coefficient and degree correlations

Directed nature of the citation network

Accelerating growth of the network

Gradual fragmentation into related yet independent fields

Ω(t) without a stationary value

Convergence problems for some other datasets

Knowledge of the dynamics can help select currently most
relevant nodes: ∆k/k matters but. . .
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Thank you for your attention!

Questions?
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