Growth of information networks

Matúš Medo, Giulio Cimini, Stanislao Gualdi

Fribourg University, Switzerland

International Workshop on Agent-Based Models and Complex Techno-Social Systems, ETH Zurich

July 3, 2012

We live in the information age

Matúš Medo (Fribourg)

Growth of information networks

We live in the information age

Information is created, spreads, fades away

A .

We live in the information age

Information is created, spreads, fades away this talk

Matúš Medo (Fribourg)

Growth of information networks

4 A b 4

Preferential attachment (PA)

A classical network model

- Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)
- Growth of cities, citations of scientific papers, WWW,...

Preferential attachment (PA)

A classical network model

- Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)
- Growth of cities, citations of scientific papers, WWW,...

- Nodes and links are added with time
- Probability that a node acquires a new link 3 proportional to its current degree: $P(i, t) \sim k_i(t) + A$

Preferential attachment (PA)

A classical network model

- Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)
- Growth of cities, citations of scientific papers, WWW,...

- Nodes and links are added with time
- Probability that a node acquires a new link 3• proportional to its current degree: $P(i, t) \sim k_i(t) + A$
 - Pros: simplicity, resulting power-law degree distribution
 - Cons: simplicity (deviations from the model observed in reality)

4 **A b b b b b b**

PA in scientific citation data

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

PA in scientific citation data

See also Adamic & Huberman (2000), Redner (2005), Newman (2009),...

• • • • • • • • • • • •

Time decay is fundamental

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Two generalizations of the basic PA

Fitness model (Bianconi & Barabási, 2001):

Each node has fitness that influences the attachment probability

 $P(i, t) \sim f_i k_i(t)$

Two generalizations of the basic PA

- Fitness model (Bianconi & Barabási, 2001):
 - Each node has fitness that influences the attachment probability

 $P(i, t) \sim f_i k_i(t)$

- Aging of sites (Dorogovtsev & Mendes, 2000):
 - For a node that appeared at time *s*, the attachment rate is

$$P(i,t) \sim k_i(t)/(t-\tau_i)^{lpha}$$

They both have their problems...

く 同 ト く ヨ ト く ヨ ト -

Outline for the rest

- **1** Formulate a new model
- 2 Present empirical evidence
- 3 Discuss the implications

A (10) A (10)

The model (PRL 107, 238701, 2011)

We combine heterogeneous fitness with aging
 Fitness with aging = relevance

$P(i, t) \sim R_i(t) k_i(t)$

- 2 Nodes are not made equal!
 - For example, initial values $R_i(0)$ are random

< □ > < 同 > < 回 > < 回 > .

$$P(i,t) = \frac{k_i(t)R_i(t)}{\sum_{j=1}^t k_j(t)R_j(t)} = \frac{k_i(t)R_i(t)}{\Omega(t)}$$

æ

<ロ> <問> <問> < 回> < 回> 、

$$\frac{\mathrm{d}\langle k_i(t)\rangle}{\mathrm{d}t} \approx P(i,t) = \frac{k_i(t)R_i(t)}{\sum_{j=1}^t k_j(t)R_j(t)} = \frac{k_i(t)R_i(t)}{\Omega(t) \approx \Omega^*}$$

æ

Matúš Medo (Fribourg)

æ

<ロト < 回 > < 回 > < 回 > .

- **\square** $R_i(t)$ matters little, it's T_i what's important
- Ω^* can be set to achieve desired $\langle k \rangle$

イロト イポト イヨト イヨト

Degree distributions

■ $k_i^F(T_i)$ fluctuates little \implies heterogeneoity is needed!

$$\left\langle k_{i}^{F}(T_{i})\right\rangle =\exp\left(T_{i}/\Omega^{*}
ight)$$

æ

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Degree distributions

■ $k_i^F(T_i)$ fluctuates little \implies heterogeneoity is needed!

$$\left\langle k_{i}^{F}(T_{i})\right\rangle =\exp\left(T_{i}/\Omega^{*}
ight)$$

Some examples:

- 1 $\rho(T)$ normally distributed \implies log-normal P(k)
- 2 $\rho(T)$ with exponential tail $\implies P(k)$ with a power-law tail

3
$$\rho(T) \sim e^{-\alpha T} \implies P(k) \sim k^{-3}$$
 (exactly as for PA!)

3

イロト 不得 トイヨト イヨト

Datasets

Citations among papers published by the APS

- 2 Citations among the US patents
- 3 User collections of web bookmarks
- 4 Paper downloads from the Econophysics Forum

data description	label	nodes	links	span/resolution	Δt
APS citations	APS	450k	4.7M	117 years/daily	91 days
U.S. patents	PAT	3.2M	24M	31 years/yearly	1 year
web bookmarks	WEB	2.3M	4.2M	4 years/daily	10 days
paper downloads	EF	600	16k	23 months/daily	10 days

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Empirical relevance

Empirical relevance of paper *i* at time *t*: $X_i(t, \Delta t)$

 $X_i(t, \Delta t) := \frac{\text{number of citations received by } i \text{ in } (t, t + \Delta t)}{\text{expected number of citations according to PA}} \sim \frac{\Delta k}{k(t)}$

• When PA works perfectly, $X_i(t, \Delta t) = 1$

Decay of relevance

Matúš Medo (Fribourg)

Heterogeneity of total relevance

Matúš Medo (Fribourg)

How good model do we have?

Robust statistical validation needed

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How good model do we have?

- Robust statistical validation needed
- Maximum likelihood estimation: maximize $\mathcal{L}(\mathcal{D}|M)$
 - **D** is given data (growing network)
 - *M* is a parametrized network model
 - $\blacksquare \ \mathcal{L}$ is likelihood of the data for a given model

How good model do we have?

- Robust statistical validation needed
- Maximum likelihood estimation: maximize $\mathcal{L}(\mathcal{D}|M)$
 - **D** is given data (growing network)
 - *M* is a parametrized network model
 - L is likelihood of the data for a given model
- Problems:
 - Dimensionality: number of model parameters proportional to the number of nodes ("high-dimensional statistics")
 - Data size: computation of likelihood is costly
 - Convergence: lack of, shallow maximum, validation

A (B) + A (B) + A (B) +

Models competing

- Links choose target node at random
- **1** PA with an additive term: $P(i, t) \sim k_i(t) + A$
- **2** PA with heterogeneous additive term: $P(i, t) \sim k_i(t) + A_i$
- **3** Eom-Fortunato model: $P(i, t) \sim k_i(t) + A_i(t)$
- 4 PA with relevance: $P(i, t) \sim R_i(t)(k_i(t) + A)$

model	$\max \mathcal{L}(\mathcal{D} M)$	parameters
Mo	-5.55 ± 0.00	0
M_1	-5.52 ± 0.01	1
M_2	-4.44 ± 0.01	N
M_3	-4.00 ± 0.01	N + 3
M_4	-3.94 ± 0.01	<i>N</i> +4

イロト イポト イヨト イヨト

- Pure PA (M_1) almost as bad as the benchmark model M_0
- Heterogeneous additive term (M₃) has little substance
- Difference M_4 vs M_3 seems small but corresponds to \mathcal{D} being 10^{410} -times more likely under M_4 than under M_3

< □ > < 同 > < 回 > < 回 > < 回 >

Open problems

- Study clustering coefficient and degree correlations
- Directed nature of the citation network
- Accelerating growth of the network
- Gradual fragmentation into related yet independent fields
- $\Omega(t)$ without a stationary value

A (1) > A (2) > A

Open problems

- Study clustering coefficient and degree correlations
- Directed nature of the citation network
- Accelerating growth of the network
- Gradual fragmentation into related yet independent fields
- $\Omega(t)$ without a stationary value

- Convergence problems for some other datasets
- Knowledge of the dynamics can help select currently most relevant nodes: ∆k/k matters but...

イロト イポト イラト イラト

Thank you for your attention!

Questions?

Matúš Medo (Fribourg)

Growth of information networks