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Outline

1 Growing networks
Models of information networks with aging

Models of social networks (???)

2 Applications
Forecasting the popularity of research papers

Quantifying the significance of scientific papers

Finding the users who “know better” in e-commerce systems

Goals:
1) Understand how networks grow
2) Understand how this understanding can be useful
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Part 1

Models of growing networks



Preferential attachment (PA)

A classical network model

Yule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)

Growth of cities, citations of scientific papers, WWW,. . .

Nodes and links are added with time

Probability that a node acquires a new link
proportional to its current degree

P(i, t) ∼ ki(t)

1

2

3

4

In detail: P(i, t) =
ki(t)∑
j kj(t) or P(i, t) =

ki(t)+C∑
j [kj(t)+C]

Pros: simple, produces a power-law degree distribution
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Solving the basic PA model: the contiuum approach

1 Starting with two connected nodes at time 1, we introduce one node
at each time step and connect it with one existing node

2 Approximate the probabilistic degree evolution with the average one

dki(t)
dt

=
ki(t)∑
j kj(t)

=
ki(t)
2t

=⇒ ki(t) ∼
√

t

3 The initial condition is ki(i) = 1, hence ki(t) =
√

t/i

4 Now the distribution of i is uniform among the nodes

P(k) dk = %(i) di =⇒ P(k) = %(i)

∣∣∣∣∣∣dk
di

∣∣∣∣∣∣−1

∼ i3/2 ∼ k−3

The master equation can do much more. . .
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The basic PA model: advantage of the first

Coming back to ki(t) ≈
√

t/i: the first nodes have by far the highest
average degree

The power-law degree distribution solely due to the first nodes
(no “American dream”)

sample network for N = 1000
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Even worse: infinite equlibration time for the degree distribution when
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Berset & Medo, EPJ B 86, 260, 2013
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A detour: fitting (power-law) distribution

Avoid fitting a straight line in the log-log plot

A principled approach: Clauset et al, SIAM Review 51, 661, 2009
Key tools: maximum likelihood estimate, Kolmogorov-Smirnov statistic,
p-values

Advantages:
A better estimate of the exponent value:

α̂ = 1 + n
[ n∑

i=1

ln
xi

xmin

]−1

(exact when xi ’s are continuous)

Also possible to estimate xmin and cutoff parameter λ (if needed)

More generally: a way to compare between different fitting distributions

It’s easy to mistake a log-normal distribution for power-law

Beware: A power law is rarely the best option
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PA in scientific citation data

Journals of the American Physical Society from 1893 to 2009:
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See also Adamic & Huberman (2000), Redner (2005), Newman (2009),. . .
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Time decay is fundamental
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Growing information networks: they are everywhere

Citations among scientific papers
Directed monopartite network
Outgoing links (references) are fixed

The World Wide Web
Directed monopartite network
New nodes and new links are added gradually

E-commerce data
Undirected bipartite network
Links connect users with the items that they have
purchased/rated/collected

Wikipedia
Semantic centrality of page topic important
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Growing networks with fitness and aging
(PRL 107, 238701, 2011)

Probability that node i attracts a new link

P(i, t) ∼ ki(t)︸︷︷︸
degree

× fi︸︷︷︸
fitness

×DR(t)︸︷︷︸
aging︸           ︷︷           ︸

relevance

The aging factor DR(t) decays with time: a decay of relevance

When DR(t)→ 0, the popularity of nodes eventually saturates

The bottom line:
Good: Produces various realistic degree distributions (power-law, etc.)
Bad: Difficult to validate (high-dimensional statistics)
Good: This model explains the data much better than any other
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Comparing network growth models
(Phys Rev E 89, 032801, 2014)

Between models, often only aggregate results are compared

Detailed look: likelihood that data has been produced by the model
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Solving the relevance model

P(i, t) =
ki(t)Ri(t)∑t

j=1 kj(t)Rj(t)
=

ki(t)Ri(t)
Ω(t)

dki(t)
dt ≈

≈ Ω∗

⇓

k F
i = exp

( 1
Ω∗

∫ ∞

0
Ri(t) dt

)
= exp

(
Ti/Ω

∗
)

Ri(t) matters little, it’s Ti what’s important

Ω∗ can be set to achieve the desired 〈k 〉

Very strong (exponential) dependence between T and popularity
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Growth of social networks: typical features

1 High clustering (a friend of a friend is a friend)

2 In directed networks, high reciprocity (Flickr: about 70%)

3 Broad degree distribution (no surprise)

4 Small average distance (six degrees of separation)

5 Assortativity (“Birds of a feather flock together”)
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How to get: high clustering

Due to constraints:
If for example, nodes are distributed in real space and the probability of
being connected decreases with distance
If A ∼ B and B ∼ C, probably A is close to B and B is close to C
Hence A is also close to C and they are likely to be connected
See Boguñá et al, Phys. Rev. E 70, 056122 (2004)

Triangle closing:
Imagine that links are introduced with time (growth)
The growth rule is conditional—with certain probability a random link is
added, otherwise a “triangle” is chosen at random and “closed”

→1 1

2 2

3 3
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How to get: . . .

Link reciprocity
Easy: every user has some probability to reciprocate the incoming links

Broad degree distribution
Preferential attachment is again an option (for both out- and in-degree)
Inherent node feature (node activity for out-degree)

Small average distance
Due to a mixture of short-range order (lattice) and long-range
randomness (shortcuts)
The seminal model by Watts & Strogatz (Nature 393(6684), 440, 1998)

Assortativity
As opposed to technological networks, social networks are mostly
assortative (with respect to degree or other node properties)
In growth, we can prefer linking to nodes of similar degree:
P(k2|k1) ∼ e−|k2−k1 |, for example
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Example model: Kumar, Novak, Tomkins (2006)

Three kinds of users: passive, inviter, linker
1 Passive users: targets for the others
2 Inviters: bring new users to the networks
3 Linkers: users who actively seek new contacts in the network

Nodes and links are gradually added, the proportion P:I:L is given

In each time step, a new node and ε links are added

User i becomes active with probability ki + 1

Active Inviter links to an additional new Passive node

Active Linker prefers linking to other linkers

Flickr: p = (0.25, 0.35, 0.40), ε = 6, preference for linkers γ = 15
This reproduces well the Flickr social network
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Network growth models: summary

Key ingredients for information networks:
1 Preferential attachment
2 (Heterogeneous) Node fitness
3 Aging

To reproduce well social networks, we need many bits. . .

Models establish a playground!
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Application 1

Quantifying Long-Term Scientific Impact



Forecasting the citation count

Citations are commonly used to measure a paper’s importance
They also serve as input for other metrics (h-index for researchers,
impact factor for journals, etc.)

But: citations take long time to accumulate

Can we predict the eventual citation count of a paper?

Wang et al (Science 342, 6154, pp. 127, 2013) say yes!
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How to forecast

Observation: Relevance of papers has a log-normal form

Ri(t) = ηi ×
1

√
2πσi t

exp
[
−

(ln t − µi)
2

2σ2
i

]
Here ηi is fitness of paper i, µi is its immediacy, and σi is its longevity

Integrating the master equation, we get

ki(t) = m
[
eλiΦ

(
ln t−µi
σi

)
− 1

]
(∗)

where m is the number of references per paper, β is the growth rate of
the number of papers per time unit, A is a normalization constant,
λi = ηiβ/A is paper’s relative fitness, and Φ(·) is the CDF of the
standard normal distribution
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Forecasting results

Cumulative citation count in the APS data and their fit with (∗)

Bottom line: in the long term, λ predicts citations
better than the short-term citation count

But: careful fitting needed (regularization?),
& 10 years to predict individual papers well
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Application 2

Temporal bias of PageRank



What is PageRank

PageRank is essentially a node centrality (importance) measure

Simplest centrality: degree (counting the links—local)

Non-local: PageRank (counting weighted links)

Assign score p(t)
i to each node which initially is uniform: p(0)

i = 1/N

p(t+1)
i = c

∑
j→i

p(t)
j

kj
+

1 − c
N

j → i are nodes j that point to i

Here N is the number of nodes and kj is degree of node j

c is a so-called teleportation parameter (c = 0: no teleportation)

Iterations: convergence quick even for Google-size networks

1 2 3

4 5

0.04 0.06 0.07

0.43 0.40

Important nodes are those that are pointed by other important nodes
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Two forms of aging in information networks

Decay of relevance: DR(t) = exp(−t/θR)

Node relevance influences the in-coming links

Decay of activity: DA (t) = exp(−t/θA )

Nodes activity influences the out-going links

The probability to attract an incoming link

P in
i (t) ∼ (k in

i (t) + 1) fi DR(t − τi)

The probability to create an outgoing link

Pout
i ∼ AiDA (t − τi)
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The biases of PageRank

RM with slow activity decay (θA = 10, 000)
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The biases of PageRank

Why the new kind of bias?

time

source target

old nodes recent nodes
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The biases of PageRank

Now the question is:
Does PageRank rank the nodes well?

Recall, quality of node i is represented by its fitness fi
Hence, compare r(pi , fi) with r(ki , fi) to see whether PageRank
outperforms in-degree
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The biases of PageRank

PageRank vs indegree in the RM
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The biases of PageRank

PageRank vs indegree in the EFM
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Application 3

Correcting the bias of PageRank



Why bias is bad

Metrics: usually well intentioned, not always
well informed, often ill applied

Leiden Manifesto (2015)

In citation data, ΘR is a few years and ΘA = 0

We expect PageRank to perform very badly, yet it is often applied here
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Chen et al, J Infomet 1, 8 (2007)
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Correcting PageRank

Compute PageRank score p for all papers in the APS citation data
(1893–2009, 449 937 papers)

Rescaled PageRank of paper i is

Rp,i =
pi − µi

σi

Here µi and σi are the mean and standard deviation of p for papers
published “close” to paper i
Outcome is little sensitive to what “close” means

Rationale: avoid comparison of apples with oranges

Evaluation based on “milestone letters” announced recently
(http://journals.aps.org/prl/50years/milestones)
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Rescaled PageRank: results
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Allows us to fairly compare all papers!
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Rescaled PageRank: results
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Note: CiteRank is competitive with Rp in some aspects
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Application 4

Discoverers in online social systems



Beyond preferential attachment in social systems

Bipartite user-item data (e.g., who bought what at Amazon.com)
Similar behavior in monopartite social data (user-user)

Previous research shows/assumes that users are driven by popularity
combined with fitness and aging

But: is this the whole story?

To find the users who defy popularity, we do the following:
A user makes a discovery when they are among the first 5 users to
collect an eventually highly popular item (top 1% of all items are used
as target)

A new metric, user surprisal, shows that there are users who make
discoveries so often that it cannot be explained by luck
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Discoveries in Amazon data
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Black bars: popularity of collected items when they are collected.
Blue bars: final popularity of collected items.
Red circles: discoveries.
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How to quantify the user success

We know the number of links ki and the number of discoveries di for
each user

Which users are truly exceptional?

The overall discovery probability is pD = D/L = (
∑

i di)/(
∑

i ki)

Assuming that all users and links are equal, the probability that a user
makes at least di discoveries in ki attempts is

P0(di |ki, pD ,H0) =
ki∑

n=di

(
ki

n

)
pn

D(1 − pD)ki−n
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Top users in the Amazon data

Rank ki di ri P0
i si = − ln P0

1 188 59 51.6 10−82 187.6
2 244 50 33.7 10−59 135.3
3 217 35 26.5 10−38 86.4
4 237 26 18.0 10−24 54.4
5 190 24 20.8 10−24 53.8
6 364 26 11.7 10−19 43.5
7 185 18 16.0 10−16 36.1
8 73 11 24.8 10−12 27.6
9 41 9 36.1 10−12 26.4

10 60 10 27.4 10−12 26.2
. . .

Is this not just luck?
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Discoverer or a lucky guy?

Under the null hypothesis, we can generate
the number of discoveries at will

Algorithm 1 Using bootstrap to find the average highest user surprisal
1: Run many times
2: Go over all users
3: Draw di from the binomial distribution
4: Compute the corresponding si

5: Find the highest surprisal value
6: Report the average highest surprisal value

See C. R. Shalizi, The Bootstrap, American Scientist (2010) for more
details on bootstrap
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But. . . Is this any useful?

Take young items with only one link and divide them into groups
depending on the surprisal of the user who has collected them
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The answer: Yes, potentially very useful!
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Discoverers: conclusions

We find discoverers in almost any information network we look at

The surprisal measure is not biased by activity and efficiently
identifies the unusual users

Once identified, discoverers can be used for prediction

There are still many open questions. . .
1 What other influences contribute to the observed discovery patterns? Social status? Do

the users have head start on some items?
2 How best to decide who is a discoverer and who is not?
3 How best to use this information for popularity prediction?
4 How to model this kind of data?

E.g., to which extend do the ordinary users ignore fitness?
5 How does all this translates to monoparite data?
6 There is fine struture—someone is maybe a discoverer in sci-fi movies but very ordinary

in romantic movies; how to approach this?
7 How to use this knowledge to design better algorithms?
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General lessons

We know a lot about the evolution of
complex systems

Let the data drive you

Do not use (trust in) wrong models

Do not use wrong algorithms

Do not use right algorithms wrongly
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Thank you for your attention
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