How to quantify the influence of correlations on investment diversification

Matúš Medo¹, Chi Ho Yeung², Yi-Cheng Zhang¹

¹University of Fribourg, Switzerland ²Department of Physics, HKUST, Hong Kong, China

International workshop on coping with crises in complex socio-economic systems Zürich, June 12, 2009

Medo, Yeung, Zhang (UNIFR, HKUST)

2

<ロト < 回 ト < 回 ト < 回 ト < 回 ト ...</p>

DIVERSIFICATION

Medo, Yeung, Zhang (UNIFR, HKUST)

Influence of correlations...

э

<ロト < 回 ト < 回 ト < 回 ト < 回 ト ...</p>

<ロト <回 > < 回 > < 回 > .

DIVERSIFICATION

Medo, Yeung, Zhang (UNIFR, HKUST)

Influence of correlations...

э

<ロト < 回 ト < 回 ト < 回 ト < 回 ト ...</p>

DIVERSIFICATION

DIVERSIFICATION?

Medo, Yeung, Zhang (UNIFR, HKUST)

Influence of correlations...

э

Mean-Variance portfolio (Markowitz, 1952)

M stocks:

- average returns μ_i
- return variances V_i
- return correlations C_{ij} (matrix $M \times M$)

Mean-Variance portfolio (Markowitz, 1952)

M stocks:

- **average returns** μ_i
- return variances V_i
- return correlations C_{ij} (matrix $M \times M$)

our portfolio: fractions of wealth f_i invested in individual stocks

portfolio return:
$$R_P = \sum_{i=1}^{M} f_i \mu_i$$

portfolio variance: $V_P = \sum_{i,j=1}^{M} f_i f_j C_{ij} \sqrt{V_i V_j}$

Medo, Yeung, Zhang (UNIFR, HKUST)

Mean-Variance portfolio (Markowitz, 1952)

M stocks:

- average returns μ_i
- return variances V_i
- return correlations C_{ij} (matrix $M \times M$)

our portfolio: fractions of wealth f_i invested in individual stocks

portfolio return:
$$R_P = \sum_{i=1}^{M} f_i \mu_i$$

portfolio variance: $V_P = \sum_{i,j=1}^{M} f_i f_j C_{ij} \sqrt{V_i V_j}$

mean-variance portfolio: minimizes V_P for a given R_P

This is the key slide

the optimal portfolio variance

$$V_P^*(R_P, M, \mathbf{C}) = \dots$$

let's focus purely on correlations: $\mu_i = \mu$, $V_i = V$

3

This is the key slide

the optimal portfolio variance

$$V_P^*(R_P, M, \mathbf{C}) = \dots$$

■ let's focus purely on correlations: $\mu_i = \mu$, $V_i = V$

effective portfolio size m_{ef}

optimal portfolio constructed from *M* correlated assets optimal portfolio constructed from ??? uncorrelated assets

• • • • • • • • • • • • •

This is the key slide

the optimal portfolio variance

$$V_P^*(R_P, M, \mathbf{C}) = \dots$$

■ let's focus purely on correlations: $\mu_i = \mu$, $V_i = V$

effective portfolio size m_{ef}

optimal portfolioopconstructed from \iff M correlated assets???

optimal portfolio constructed from ??? uncorrelated assets

イロト イポト イヨト イヨト

 $V_P^*(R_P, M, \mathbf{C}) = V_P^*(R_P, m_{ ext{ef}}, \mathbf{1}) \implies m_{ ext{ef}}$

$$m_{ ext{ef}} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1}
ight)_{ij}$$

Medo, Yeung, Zhang (UNIFR, HKUST)

3

$$m_{\rm ef} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1} \right)_{ij}$$

no correlations:

$$m_{\rm ef} = M$$

Medo, Yeung, Zhang (UNIFR, HKUST)

3

$$m_{\rm ef} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1} \right)_{ij}$$

no correlations:

$$m_{\rm ef}=M$$

perfect correlations:

$$m_{\rm ef} = 1$$

Medo, Yeung, Zhang (UNIFR, HKUST)

$$m_{\rm ef} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1} \right)_{ij}$$

no correlations:

$$m_{\rm ef} = M$$

perfect correlations:

$$m_{\rm ef} = 1$$

■ *N* groups of stocks with no inter-group correlations:

$$m_{\mathrm{ef}} = m_{\mathrm{ef}}(1) + \cdots + m_{\mathrm{ef}}(N)$$

Medo, Yeung, Zhang (UNIFR, HKUST)

Effective portfolio size: saturation

all correlations identical:

$$m_{
m ef}=rac{M}{1+(M-1)C}$$

3

Effective portfolio size: saturation

all correlations identical:

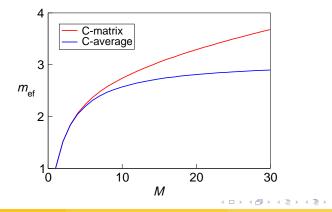
$$m_{
m ef} = rac{M}{1+(M-1)C}
ightarrow rac{1}{C}$$

3

Effective portfolio size: saturation

all correlations identical:

$$m_{\mathrm{ef}} = rac{M}{1+(M-1)C}
ightarrow rac{1}{C}$$



Medo, Yeung, Zhang (UNIFR, HKUST)

Effective portfolio size: evolution

20 current stocks from the DJIA (Jan 1973-Apr 2008)



-

Thank you for your attention

2