Limited information and diversification in the growth optimal portfolio

Matúš Medo

University of Fribourg, Switzerland

Fribourg Symposium
November 7, 2008

The Kelly game

1 in one turn, a fraction f of the current wealth can be invested

- with the probability p, the invested amount is doubled
- with the probability $1-p$, the invested amount is lost

2 repeat (infinitely) many times
3 winning probability p is constant and known

The Kelly game

1 in one turn, a fraction f of the current wealth can be invested

- with the probability p, the invested amount is doubled
- with the probability $1-p$, the invested amount is lost

2 repeat (infinitely) many times
3 winning probability p is constant and known

■ question: how to find the optimal investment fraction?

The Kelly game

1 in one turn, a fraction f of the current wealth can be invested

- with the probability p, the invested amount is doubled
- with the probability $1-p$, the invested amount is lost

2 repeat (infinitely) many times
3 winning probability p is constant and known

■ question: how to find the optimal investment fraction?
■ well-known answer: maximise the exponential growth rate

$$
G(f):=\left\langle\ln \left(1+f R_{1}\right)\right\rangle
$$

$R_{1}=$ game return on one-turn basis

The Kelly game

■ optimal investment fraction

$$
f^{*}(p)= \begin{cases}0 & p \in\left[0 ; \frac{1}{2}\right] \\ 2 p-1 & p \in\left(\frac{1}{2} ; 1\right]\end{cases}
$$

■ optimal growth rate

$$
G^{*}(p)=\ln 2+p \ln p+(1-p) \ln (1-p)
$$

The Kelly game

■ optimal investment fraction

$$
f^{*}(p)= \begin{cases}0 & p \in\left[0 ; \frac{1}{2}\right] \\ 2 p-1 & p \in\left(\frac{1}{2} ; 1\right]\end{cases}
$$

■ optimal growth rate

$$
G^{*}(p)=\ln 2+p \ln p+(1-p) \ln (1-p)
$$

The Kelly game

■ optimal investment fraction

$$
f^{*}(p)= \begin{cases}0 & p \in\left[0 ; \frac{1}{2}\right] \\ 2 p-1 & p \in\left(\frac{1}{2} ; 1\right]\end{cases}
$$

- optimal growth rate

$$
G^{*}(p)=\ln 2+p \ln p+(1-p) \ln (1-p)
$$

- in real life:

■ simultaneous games

- unknown game properties

■...

Diversification and correlations

■ M different games simultaneously played, not independent

Diversification and correlations

■ M different games simultaneously played, not independent

- mathematically:

■ expected returns $\mu_{i}(i=1, \ldots, M)$
■ expected variances $V_{i}(i=1, \ldots, M)$

- matrix of correlations C (dimension $M \times M$)

Diversification and correlations

■ M different games simultaneously played, not independent

- mathematically:

■ expected returns $\mu_{i}(i=1, \ldots, M)$
■ expected variances $V_{i}(i=1, \ldots, M)$

- matrix of correlations C (dimension $M \times M$)

■ let's forget about different returns: $\mu_{i}=\mu, V_{i}=V$

Diversification and correlations

■ M different games simultaneously played, not independent

- mathematically:

■ expected returns $\mu_{i}(i=1, \ldots, M)$
■ expected variances $V_{i}(i=1, \ldots, M)$

- matrix of correlations C (dimension $M \times M$)

■ let's forget about different returns: $\mu_{i}=\mu, V_{i}=V$
■ the effective portfolio size $m_{\text {ef }}$

optimal portfolio
constructed from
\boldsymbol{N} correlated assets
:---:
constructed from

??? uncorrelated assets

Effective portfolio size: properties

■ both for the Kelly portfolio and the M-V portfolio:

$$
m_{\mathrm{ef}}=\sum_{i, j}\left(\mathrm{C}^{-1}\right)_{i, j}
$$

Effective portfolio size: properties

■ both for the Kelly portfolio and the M-V portfolio:

$$
m_{\mathrm{ef}}=\sum_{i, j}\left(\mathrm{C}^{-1}\right)_{i, j}
$$

■ no correlations:

$$
m_{\mathrm{ef}}=M
$$

Effective portfolio size: properties

■ both for the Kelly portfolio and the M-V portfolio:

$$
m_{\mathrm{ef}}=\sum_{i, j}\left(\mathrm{C}^{-1}\right)_{i, j}
$$

■ no correlations:

$$
m_{\mathrm{ef}}=M
$$

■ with N groups of games with no inter-group correlations:

$$
m_{\mathrm{ef}}=m_{\mathrm{ef}}(1)+\cdots+m_{\mathrm{ef}}(N)
$$

Effective portfolio size: properties

■ both for the Kelly portfolio and the M-V portfolio:

$$
m_{\mathrm{ef}}=\sum_{i, j}\left(\mathrm{C}^{-1}\right)_{i, j}
$$

■ no correlations:

$$
m_{\mathrm{ef}}=M
$$

■ with N groups of games with no inter-group correlations:

$$
m_{\mathrm{ef}}=m_{\mathrm{ef}}(1)+\cdots+m_{\mathrm{ef}}(N)
$$

■ all correlations identical:

$$
m_{\mathrm{ef}}=\frac{M}{1+(M-1) C}<\frac{1}{C}
$$

Effective portfolio size: evolution

20 current stocks from the DJIA (Jan 1973—Apr 2008)

Limited information: framework

■ even "noisy" information in the form $p \pm \Delta$ is artificial
■ let's assume that we use only T past turns for learning
...LWWWLWWLLW

Limited information: framework

■ even "noisy" information in the form $p \pm \Delta$ is artificial
■ let's assume that we use only T past turns for learning
...LWWWLWWLLW
information about the game

Limited information: framework

■ even "noisy" information in the form $p \pm \Delta$ is artificial
■ let's assume that we use only T past turns for learning

Limited information: framework

■ even "noisy" information in the form $p \pm \Delta$ is artificial
■ let's assume that we use only T past turns for learning

Limited information: framework

■ even "noisy" information in the form $p \pm \Delta$ is artificial
■ let's assume that we use only T past turns for learning

Limited information: framework

■ even "noisy" information in the form $p \pm \Delta$ is artificial
■ let's assume that we use only T past turns for learning

Limited information: results

■ observing w wins in T turns gives us the information

$$
\varrho(p \mid w, T) \propto \pi(p) P(w \mid p, T)
$$

Limited information: results

■ observing w wins in T turns gives us the information

$$
\varrho(p \mid w, T) \propto \pi(p) P(w \mid p, T)
$$

■ no prior information about the game: $\pi(p)=1$ for $p \in[0 ; 1]$

Limited information: results

■ observing w wins in T turns gives us the information

$$
\varrho(p \mid w, T) \propto \pi(p) P(w \mid p, T)
$$

■ no prior information about the game: $\pi(p)=1$ for $p \in[0 ; 1]$

- the optimal investment fraction is

$$
f^{*}(w, T)=\frac{2 w-T}{T+2} \quad(w>T / 2)
$$

Limited information: results

■ observing w wins in T turns gives us the information

$$
\varrho(p \mid w, T) \propto \pi(p) P(w \mid p, T)
$$

■ no prior information about the game: $\pi(p)=1$ for $p \in[0 ; 1]$

- the optimal investment fraction is

$$
f^{*}(w, T)=\frac{2 w-T}{T+2} \quad(w>T / 2)
$$

■ two interesting cases:

$$
\begin{gathered}
\lim _{T \rightarrow \infty} f^{*}(w, T)=2 \lim _{T \rightarrow \infty} \frac{w}{T}-1=2 p-1 \\
f^{*}(T, T)=\frac{T}{T+2}<1
\end{gathered}
$$

Limited information: results

Limited information: results

$$
G^{*}(p, T) \approx \underbrace{\ln 2+p \ln p+(1-p) \ln (1-p)}_{\text {perfect information }}-\underbrace{1 /(2 T)}_{\text {limited information }}
$$

The role of prior information

■ what is $\pi(p)$?

The role of prior information

- what is $\pi(p)$?

■ "There cannot be a sure-win game!"

- set $\pi(p)=0$ for $p>p_{\text {max }}$

The role of prior information

- what is $\pi(p)$?

■ "There cannot be a sure-win game!"

- set $\pi(p)=0$ for $p>p_{\text {max }}$

■ "Great, I have my posterior $P(p \mid w, T)$ but what if. . ."

- necessary because with enough data, prior beliefs are overruled!

Conclusion

■ we have seen:
■ a new quantity-the effective portfolio size

- limited information in a toy system
- simple analytical results

Conclusion

■ we have seen:
■ a new quantity-the effective portfolio size

- limited information in a toy system
- simple analytical results

■ we haven't seen:

- realistic risky games (log-normal returns, etc.)
- full capabilities of the prior information $\pi(p)$
- less frequent portfolio rebalancing
- transaction costs

Conclusion

■ we have seen:
■ a new quantity-the effective portfolio size

- limited information in a toy system
- simple analytical results

■ we haven't seen:

- realistic risky games (log-normal returns, etc.)
- full capabilities of the prior information $\pi(p)$
- less frequent portfolio rebalancing
- transaction costs

Thank you for your attention

