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The Kelly game

1 in one turn, a fraction f of the current wealth can be invested
with the probability p , the invested amount is doubled
with the probability 1− p , the invested amount is lost

2 repeat (infinitely) many times
3 winning probability p is constant and known

question: how to find the optimal investment fraction?

well-known answer: maximise the exponential growth rate

G(f ) :=
〈

ln
(
1 + f R1

)〉
R1 = game return on one-turn basis
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The Kelly game

optimal investment fraction

f ∗(p) =

0 p ∈ [0; 1
2 ]

2p − 1 p ∈ (1
2 ; 1]

optimal growth rate

G∗(p) = ln 2 + p ln p + (1− p) ln(1− p)

in real life:
simultaneous games
unknown game properties
. . .
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Diversification and correlations

M different games simultaneously played, not independent

mathematically:
expected returns µi (i = 1, . . . , M)
expected variances Vi (i = 1, . . . , M)
matrix of correlations C (dimension M ×M)

let’s forget about different returns: µi = µ, Vi = V

the effective portfolio size mef

optimal portfolio optimal portfolio
constructed from ⇐⇒ constructed from

N correlated assets ??? uncorrelated assets
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Matúš Medo (University of Fribourg) Diversification and limited information 4 / 11



Diversification and correlations

M different games simultaneously played, not independent

mathematically:
expected returns µi (i = 1, . . . , M)
expected variances Vi (i = 1, . . . , M)
matrix of correlations C (dimension M ×M)

let’s forget about different returns: µi = µ, Vi = V

the effective portfolio size mef

optimal portfolio optimal portfolio
constructed from ⇐⇒ constructed from

N correlated assets ??? uncorrelated assets
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Effective portfolio size: properties

both for the Kelly portfolio and the M-V portfolio:

mef =
∑
i, j

(
C−1)

i, j

no correlations:
mef = M

with N groups of games with no inter-group correlations:

mef = mef(1) + · · ·+ mef(N)

all correlations identical:

mef =
M

1 + (M − 1)C
<

1
C
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Effective portfolio size: evolution

20 current stocks from the DJIA (Jan 1973—Apr 2008)
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Limited information: framework

even “noisy” information in the form p ±∆ is artificial

let’s assume that we use only T past turns for learning

. . . L W W W L W W L L W

↓

information about the game

↓

our investment decision

T turns, w wins

%(p|w , T )

f ∗(w , T )
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Limited information: results

observing w wins in T turns gives us the information

%(p|w , T ) ∝ π(p)P(w |p, T )

no prior information about the game: π(p) = 1 for p ∈ [0; 1]

the optimal investment fraction is

f ∗(w , T ) =
2w − T
T + 2

(w > T/2)

two interesting cases:

lim
T→∞

f ∗(w , T ) = 2 lim
T→∞

w
T
− 1 = 2p − 1

f ∗(T , T ) =
T

T + 2
< 1
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Matúš Medo (University of Fribourg) Diversification and limited information 8 / 11



Limited information: results

observing w wins in T turns gives us the information

%(p|w , T ) ∝ π(p)P(w |p, T )

no prior information about the game: π(p) = 1 for p ∈ [0; 1]

the optimal investment fraction is

f ∗(w , T ) =
2w − T
T + 2

(w > T/2)

two interesting cases:

lim
T→∞

f ∗(w , T ) = 2 lim
T→∞

w
T
− 1 = 2p − 1

f ∗(T , T ) =
T

T + 2
< 1
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Limited information: results

G∗(p, T ) ≈ ln 2 + p ln p + (1− p) ln(1− p)︸ ︷︷ ︸
perfect information

−1/(2T )︸ ︷︷ ︸
limited information
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The role of prior information

what is π(p)?

“There cannot be a sure-win game!”
set π(p) = 0 for p > pmax

“Great, I have my posterior P(p|w , T ) but what if. . . ”
necessary because with enough data, prior beliefs are overruled!
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Conclusion

we have seen:
a new quantity—the effective portfolio size
limited information in a toy system
simple analytical results

we haven’t seen:
realistic risky games (log-normal returns, etc.)
full capabilities of the prior information π(p)
less frequent portfolio rebalancing
transaction costs
. . .

Thank you for your attention

Matúš Medo (University of Fribourg) Diversification and limited information 11 / 11



Conclusion

we have seen:
a new quantity—the effective portfolio size
limited information in a toy system
simple analytical results

we haven’t seen:
realistic risky games (log-normal returns, etc.)
full capabilities of the prior information π(p)
less frequent portfolio rebalancing
transaction costs
. . .

Thank you for your attention
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