Aging and heterogeneity in the growth of networks

Matúš Medo, Giulio Cimini, Stanislao Gualdi

Fribourg University, Switzerland

Conference on Hypernetworks, Network Dynamics and Influence on Networks December 14, 2011

Matúš Medo (Fribourg)

Growing networks

Nodes and links are added with time

Basic model: preferential attachment (PA)

- Vule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)
- Growth of cities, citations of scientific papers, WWW,...
- Probability that a node acquires a new link is assumed proportional to the node's current degree

 $P(i,t) \sim k_i(t)$

Growing networks

Nodes and links are added with time

Basic model: preferential attachment (PA)

- Vule (1925), Simon (1955), Price (1976), Barabási & Albert (1999)
- Growth of cities, citations of scientific papers, WWW,...
- Probability that a node acquires a new link is assumed proportional to the node's current degree

 $P(i,t) \sim k_i(t)$

- Pros: simplicity, resulting power-law degree distribution
- Cons: simplicity (deviations from the model observed in reality)

Pros/cons

문어 문

< 6 b

Pros/cons

э

Cons continued

- Many distributions claimed in the literature to be power laws fail in rigorous statistical tests (Clauset, Shalizi, Newman, 2009)
- Citation data shows patterns different from PA (Redner, 2005)
- No correlation between the age of a site and its number of incoming links in the WWW (Adamic & Huberman, 2000)
- A first-mover advantage in scientific citations exists but notable exceptions are present (Newman, 2009): "(There is) a hopeful sign that we as scientists do pay at least some attention to good papers that come along later"

Two generalizations of the basic PA

Fitness model (Bianconi & Barabási, 2001):

Each node has fitness that influences the attachment probability

$P(i, t) \sim f_i k_i(t)$

 \blacksquare Fitness distribution with unbounded support \implies link condensation

・ロト ・四ト ・ヨト ・ヨト

Two generalizations of the basic PA

Fitness model (Bianconi & Barabási, 2001):

Each node has fitness that influences the attachment probability

$P(i, t) \sim f_i k_i(t)$

Fitness distribution with unbounded support \implies link condensation

- Aging of sites (Dorogovtsev & Mendes, 2000):
 - For a node that appeared at time *s*, the attachment rate is

 $P(i,t) \sim k_i(t)/(t-s)^{lpha}$

■ Scale-free *P*(*k*) is observed only for very slow decay (*α* < 1)

Outline for the rest

- 1 Formulate a new model
- 2 Present empirical evidence
- 3 Solve the model
- 4 Discuss the implications

A (10) A (10)

New model (PRL 107, 238701, 2011)

We combine heterogeneous fitness with aging

Fitness with aging = relevance

```
P(i, t) \sim R_i(t) k_i(t)
```

- 2 Important point: not all nodes are equal
 - For example, initial values $R_i(0)$ are random

New model (PRL 107, 238701, 2011)

We combine heterogeneous fitness with aging

Fitness with aging = relevance

```
P(i,t) \sim R_i(t) \kappa_i(t)
```

2 Important point: not all nodes are equal

For example, initial values $R_i(0)$ are random

But is this really relevant?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Empirical evidence

Citation data provided by the American Physical Society

- 450'084 papers published by the APS from 1893 to 2009
- 4'691'938 citations within the APS journals

In-degree distribution:

- $\alpha = 2.29 \pm 0.01$, $x_{\min} = 50$
- Statistical significance only for $x_{\min} \gtrsim 150$
- Log-normal distribution does not fit the data better

< 回 > < 三 > < 三 >

Empirical evidence

Citation data provided by the American Physical Society

- 450'084 papers published by the APS from 1893 to 2009
- 4'691'938 citations within the APS journals

In-degree distribution:

- $\alpha = 2.29 \pm 0.01$, $x_{\min} = 50$
- Statistical significance only for $x_{\min} \gtrsim 150$
- Log-normal distribution does not fit the data better
- Empirical relevance of paper *i* at time *t*: $X_i(t, \Delta t)$

 $X_i(t, \Delta t) := rac{\text{number of citations received by } i \text{ in } (t, t + \Delta t)}{\text{expected number of citations according to PA}}$

• When PA works perfectly, $X_i(t, \Delta t) = 1$

< 日 > < 同 > < 回 > < 回 > < □ > <

Decay of relevance in the APS data

time window $\Delta t = 91$ days

Matúš Medo (Fribourg)

Heterogeneity of total relevance in the APS data

Matúš Medo (Fribourg)

The case of the Econophysics Forum

- A site for researchers in Econophysics
 - www.unifr.ch/econophysics
- 390 papers submitted from July 2010 until August 2011
 - 19320 downloads (50 per paper) analyzed with $\Delta t = 30$ days

The case of the Econophysics Forum

- A site for researchers in Econophysics
 - www.unifr.ch/econophysics
- 390 papers submitted from July 2010 until August 2011
 - 19320 downloads (50 per paper) analyzed with $\Delta t = 30$ days

$$P(i,t) = \frac{k_i(t)R_i(t)}{\sum_{j=1}^t k_j(t)R_j(t)} = \frac{k_i(t)R_i(t)}{\Omega(t)}$$

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

$$\frac{\mathrm{d}\langle k_i(t)\rangle}{\mathrm{d}t} \approx P(i,t) = \frac{k_i(t)R_i(t)}{\sum_{j=1}^t k_j(t)R_j(t)} = \frac{k_i(t)R_i(t)}{\Omega(t) \approx \Omega^*}$$

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

- The form of R(t) matters little: it's T what's important
- Ω^* determined by self-consistency: the average degree is two $\int \varrho(T) e^{T/\Omega^*} dT = 2 \qquad (\varrho(T) \implies \Omega^*)$

イロト イポト イヨト イヨト 二日

Degree distributions

- When T_i is given, k_i^F fluctuates little
- To model real networks, heterogeneous T is needed

$$\langle \textit{k}_{\textit{i}}^{\textit{F}}
angle = \exp\left(\textit{T}_{\textit{i}}/\Omega^{*}
ight)$$

Degree distributions

• When T_i is given, k_i^F fluctuates little

To model real networks, heterogeneous T is needed

 $\langle k_i^F \rangle = \exp\left(T_i/\Omega^*\right)$

Some examples:

1
$$\rho(T)$$
 normally distributed \implies log-normal $P(k)$
2 $\rho(T)$ with exponential tail \implies power-law $P(k)$
3 $\rho(T) = \alpha e^{-\alpha T} \implies P(k) \sim k^{-3}$ (exactly as for PA!)

Numerical results

Matúš Medo (Fribourg)

14 / 19

Time bias removed

Average degree vs age

ъ

э.

Time bias removed

Average degree vs age

Summary

- Aging and heterogeneity combined in a new model
- Solves the time bias problem of PA
- Evidence from citation data and website users
- Should be applicable to many information networks

A (10) A (10)

Open questions

- Study clustering coefficient and degree correlations
- Directed nature of the citation network
- Accelerating growth of the network
- Gradual fragmentation into related yet independent fields
- \square $\Omega(t)$ without a stationary value

く 同 ト く ヨ ト く ヨ ト -

Open questions

- Study clustering coefficient and degree correlations
- Directed nature of the citation network
- Accelerating growth of the network
- Gradual fragmentation into related yet independent fields
- $\Omega(t)$ without a stationary value
- Why $\rho(T)$ for citation data shows an exponential tail?
- What about other systems where PA is at work?

Challenges

- Mitzenmacher (2005): types of results when studying power laws
 - 1 Observe: Gather data and demonstrate a power law fit
 - 2 Interpret: Explain the significance of the power law behavior
 - 3 *Model*: Propose an underlying model that explains it
 - 4 Validate: Find data to validate/modify the model
 - 5 *Control*: Use the understanding from the model to control, modify, and improve the system behavior

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Challenges

- Mitzenmacher (2005): types of results when studying power laws
 - 1 Observe: Gather data and demonstrate a power law fit
 - 2 Interpret: Explain the significance of the power law behavior
 - 3 *Model*: Propose an underlying model that explains it
 - 4 Validate: Find data to validate/modify the model
 - 5 *Control*: Use the understanding from the model to control, modify, and improve the system behavior
- Ad 4: Maximum Likelihood Estimation can help fit individual relevance values
- Ad 5: Knowledge of the dynamics can help select the (currently) most relevant nodes

イロト イポト イヨト イヨト

Thank you for your attention

Matúš Medo (Fribourg)