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Growing networks

m Nodes and links are added with time

m Basic model: preferential attachment (PA)
m Yule (1925), Simon (1955), Price (1976), Barabasi & Albert (1999)
m Growth of cities, citations of scientific papers, WWW,. ..

m Probability that a node acquires a new link is assumed proportional
to the node’s current degree 2

P, t) ~ ki(t) 30—

Matus Medo (Fribourg) Aging and heterogeneity. . . 2/19



Growing networks

m Nodes and links are added with time

m Basic model: preferential attachment (PA)
m Yule (1925), Simon (1955), Price (1976), Barabasi & Albert (1999)
m Growth of cities, citations of scientific papers, WWW,. ..

m Probability that a node acquires a new link is assumed proportional
to the node’s current degree 2

P, t) ~ ki(t) 30—

Pros: simplicity, resulting power-law degree distribution

Cons: simplicity (deviations from the model observed in reality)
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Pros/cons
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Pros/cons
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Cons continued

m Many distributions claimed in the literature to be power laws fail in
rigorous statistical tests (Clauset, Shalizi, Newman, 2009)

m Citation data shows patterns different from PA (Redner, 2005)

m No correlation between the age of a site and its number of
incoming links in the WWW (Adamic & Huberman, 2000)

m A first-mover advantage in scientific citations exists but notable
exceptions are present (Newman, 2009):
“(There is) a hopeful sign that we as scientists do pay at least some
attention to good papers that come along later”
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Two generalizations of the basic PA

m Fitness model (Bianconi & Barabasi, 2001):

m Each node has fitness that influences the attachment probability

P(i, 1) ~ fiki(t)

m Fitness distribution with unbounded support — link condensation
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Two generalizations of the basic PA

m Fitness model (Bianconi & Barabasi, 2001):

m Each node has fitness that influences the attachment probability

P(i,t) ~ fiki(t)
m Fitness distribution with unbounded support — link condensation
m Aging of sites (Dorogovtsev & Mendes, 2000):

m For a node that appeared at time s, the attachment rate is

P(i,t) ~ ki(t)/(t — s)

m Scale-free P(k) is observed only for very slow decay (« < 1)
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Outline for the rest

Formulate a new model
Present empirical evidence
Solve the model

Discuss the implications
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New model (PRL 107, 238701, 2011)

We combine heterogeneous fitness with aging
m Fitness with aging = relevance

P(i,t) ~ Ri(t)ki(t)

Important point: not all nodes are equal

m For example, initial values R;(0) are random
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New model (PRL 107, 238701, 2011)

We combine heterogeneous fitness with aging
m Fitness with aging = relevance

P(i,t) ~ Ri(t)ki(t)

Important point: not all nodes are equal

m For example, initial values R;(0) are random

But is this really relevant?
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Empirical evidence

m Citation data provided by the American Physical Society

m 450’084 papers published by the APS from 1893 to 2009
m 4691938 citations within the APS journals

m In-degree distribution:

m o=229+0.01, Xnin =50
m Statistical significance only for xmi, = 150

~

m Log-normal distribution does not fit the data better
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Empirical evidence

m Citation data provided by the American Physical Society

m 450’084 papers published by the APS from 1893 to 2009
m 4691938 citations within the APS journals

m In-degree distribution:

m o=229+0.01, Xnin =50
m Statistical significance only for xmi, = 150

~

m Log-normal distribution does not fit the data better

m Empirical relevance of paper i at time t: Xi(t, At)

Xi(t, At) = number of citations received by i in (t,{ + At)
e " expected number of citations according to PA

m When PA works perfectly, Xi(t, At) =1
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Decay of relevance in the APS data

time window At = 91 days
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Heterogeneity of total relevance in the APS data

Ti =4 Xi(1)
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The case of the Econophysics Forum

m A site for researchers in Econophysics
B www.unifr.ch/econophysics

m 390 papers submitted from July 2010 until August 2011
m 19320 downloads (50 per paper) analyzed with At = 30days
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Solving the model

kit)Ri(t) Ki(HRi(t)

U0 =S mRm T a0
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Solving the model

) =0 (g [ A dt) = exp (T/)
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Solving the model

) =0 (g [ A dt) = exp (T/)

m The form of R(t) matters little: it's T what’s important
m Q* determined by self-consistency: the average degree is two

/Q(T)eT/ﬂ*drzz (o(T) = Q)
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Degree distributions

m When T is given, k' fluctuates little

m To model real networks, heterogeneous T is needed

(KF) = exp (T,/)
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Degree distributions

m When T is given, k' fluctuates little

m To model real networks, heterogeneous T is needed
(ki) = exp (Ti/")

m Some examples:
o(T) normally distributed — log-normal P(k)
o(T) with exponential tail = power-law P(k)
o(T) = ae T = P(k) ~ k=3 (exactly as for PAl)
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Numerical results

Ri(t) = R;(0)e—?(=1) R;(0) exponentially distributed
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Time bias removed

Average degree vs age
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Time bias removed

Average degree vs age
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Summary

m Aging and heterogeneity combined in a new model
m Solves the time bias problem of PA
m Evidence from citation data and website users

m Should be applicable to many information networks
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Open questions

m Study clustering coefficient and degree correlations

m Directed nature of the citation network

m Accelerating growth of the network

m Gradual fragmentation into related yet independent fields

m Q(t) without a stationary value
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Open questions

m Study clustering coefficient and degree correlations

m Directed nature of the citation network

m Accelerating growth of the network

m Gradual fragmentation into related yet independent fields

m Q(t) without a stationary value

m Why o(T) for citation data shows an exponential tail?

m What about other systems where PA is at work?
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Challenges

m Mitzenmacher (2005): types of results when studying power laws
Observe: Gather data and demonstrate a power law fit
Interpret. Explain the significance of the power law behavior
Model: Propose an underlying model that explains it
Validate: Find data to validate/modify the model

Control: Use the understanding from the model to
control, modify, and improve the system behavior
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m Mitzenmacher (2005): types of results when studying power laws
Observe: Gather data and demonstrate a power law fit
Interpret. Explain the significance of the power law behavior
Model: Propose an underlying model that explains it
Validate: Find data to validate/modify the model
Control: Use the understanding from the model to
control, modify, and improve the system behavior

m Ad 4: Maximum Likelihood Estimation can help fit individual
relevance values

m Ad 5: Knowledge of the dynamics can help select the (currently)
most relevant nodes
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Thank you for your attention
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